• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 5
    May  2020
    Turn off MathJax
    Article Contents
    Yang Jian, Hu Xinlu, Li Chunfang, Dong Ziliang, Zeng Guoping, Yao Shuzhen, 2020. Petrogenic and Metallogenic Geochronology, Geochemical Characteristics and Its Geological Implications of Cuizhong Fe Polymetallic Deposit, Heilongjiang Province. Earth Science, 45(5): 1593-1608. doi: 10.3799/dqkx.2019.190
    Citation: Yang Jian, Hu Xinlu, Li Chunfang, Dong Ziliang, Zeng Guoping, Yao Shuzhen, 2020. Petrogenic and Metallogenic Geochronology, Geochemical Characteristics and Its Geological Implications of Cuizhong Fe Polymetallic Deposit, Heilongjiang Province. Earth Science, 45(5): 1593-1608. doi: 10.3799/dqkx.2019.190

    Petrogenic and Metallogenic Geochronology, Geochemical Characteristics and Its Geological Implications of Cuizhong Fe Polymetallic Deposit, Heilongjiang Province

    doi: 10.3799/dqkx.2019.190
    • Received Date: 2019-08-02
    • Publish Date: 2020-05-15
    • Two main types of igneous rocks are distributed in the Cuizhong Fe polymetallic deposit, including the coarse-grained alkali-feldspar granite in the shallow part and the fine-grained alkali-feldspar granite at depth, whose relationships with ore mineralization have long been debated. Whole rock geochemistry, zircon U-Pb geochronology and Hf isotopic analyses are carried out for these two types of granitoids. Pb isotopic analyses are performed on both the granitoids and the sulfides. The coarse-grained alkali-feldspar granite and fine-grained alkali-feldspar granite yield weighted mean 206Pb/238U age of 503±2.9 Ma and 201±6.4 Ma respectively, indicating that they were formed during middle Caledonian and late Indosinian-early Yanshanian respectively.The Re-Os model age of molybdenite is 202±2.9 Ma, which is consistent with the crystallization age of the fine-grained alkali-feldspar granite.Zircons in the coarse-grained alkali-feldspar granite display εHf(t) values of -8.31 to 0.57, indicating that it was derived from partial melting of Mesoproterozoic crustal rocks. Zircon crystals in the fine-grained alkali-feldspar granite have εHf(t) values of 2.84 to 4.78, indicating that it was generated by reworking of newly-growing juvenile crustal material which was originated from depleted mantle. In combination with the metallogenic and petrologic ages, trend surface analysis of ore-forming elements, and the comparison of Pb isotopes, we suggest that the mineralization in the Cuizhong Fe polymetallic deposit is genetically associated with the fine-grained alkali-feldspar granite. The polymetallic mineralization was generated in a compressional tectonic setting in response to the subduction of the Jiamusi Block towards the Songnen Block.

       

    • loading
    • Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8
      Chen, J., Sun, F.Y., Pan, T., et al., 2012.Geological Features of Huojihe Molybdenum Deposit in Heilongjiang, and Geochronology and Geochemistry of Mineralized Granodiorite. Journal of Jilin University (Earth Science Edition), 42(S1):207-215 (in Chinese with English abstract).
      Chen, X., Liu, J.J., Zhang, D.H., et al., 2017. Re-Os Dating of Molybdenites and S-Pb Isotopic Characteristics of the Cuihongshan Iron Polymetallic Deposit, Heilongjiang Province. Acta Petrologica Sinica, 33(2):529-544 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201702014
      Du, A. D., He, H. L., Yin, N. W., et al., 1995. A Study of the Rhenium-Osmium Geochronometry of Molybdenites 1.Acta Geologica Sinica (English Edition), 8(2):171-181. https://doi.org/10.1111/j.1755-6724.1995.mp8002004.x
      Du, A.D., Zhao, D.M., Wang, S.X., et al., 2001.Precise Re-Os Dating for Molybdenite by ID-NTIMS with Carius Tube Sample Preparation.Rock and Mineral Analysi, 20(4):217-252 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs200104002
      Du, X.H., Zhang, Y., 2015. Metallogenic Epoch and Geochemistry of Heilongjiang's Huojihe Molybdenum Deposit.Resources & Industries, 17(1):48-55 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zycy201501008
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7):641. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co; 2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
      Guan, Q.B., Li, S.C., Zhang, C., et al., 2016. Zircon U-Pb Dating, Geochemistry and Geological Significance of the I-Type Granites in Helong Area, the Eastern Section of the Southern Margin of Xing-Meng Orogenic Belt. Acta Petrologica Sinica, 32(9):2690-2706 (in Chinese with English abstract).
      Hao, Y.J., Ren, Y.S., Zhao, H.L., et al., 2013. Re-Os Isotopic Dating of the Molybdenite from the Cuihongshan W-Mo Polymetallic Deposit in Heilongjiang Province and Its Geological Significance. Journal of Jilin University (Earth Science Edition). 43(6):1840-1850 (in Chinese with English abstract).
      Harrison, T., Watson, E., 1984. The Behavior of Apatite during Crustal Anatexis:Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7):1467-1477. https://doi.org/10.1016/0016-7037(84)90403-4
      Hu, X. L., Ding, Z. J., He, M. C., et al., 2014. Two Epochs of Magmatism and Metallogeny in the Cuihongshan Fe-Polymetallic Deposit, Heilongjiang Province, NE China:Constrains from U-Pb and Re-Os Geochronology and Lu-Hf Isotopes. Journal of Geochemical Exploration, 143:116-126. https://doi.org/10.1016/j.gexplo.2014.03.027
      Liu, Y., Gao, S., Hu, Z., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2):537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Lu, Y.F, 2004. GeoKit:A Geochemical Toolkit for Microsoft Excel. Geochimica, 33(5):459-464 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqhx200405004
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      Smoliar, M. I., Walker, R. J., Morgan, J. W., 1996. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 271(5252):1099-1102. https://doi.org/10.1126/science.271.5252.1099
      Sun, S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      Wilde, S.A., Wu, F.Y., Zhao, G.C., 2010.The Khanka Block, NE China, and Its Significance in the Evolution of the Central Asian Orogenic Belt.In: Kusky, T.M., Zhai, M.G., Xiao, W.J., eds., The Evolving Continents: Understanding Processes of Continental Growth. Geological Society of London Special Publication, London, 338: 117-137. http://dx.doi.org/10.1144/SP338.6
      Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China.Tectonophysics, 328(1/2):89-113. https://doi.org/10.1016/s0040-1951(00)00179-7
      Wu, F. Y., Jahn, B.M., Wilde, S.A., et al., 2003. Highly Fractionated I-Type Granites in Ne China (I):Geochronology and Petrogenesis. Lithos, 66(3-4):241-273. https://doi.org/10.1016/S0024-4937(02)00222-0
      Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis.Chemical Geology, 187(1/2):143-173. https://doi.org/10.1016/s0009-2541(02)00018-9
      Wu, F. Y., Yang, J. H., Lo, C. H., et al., 2007. The Heilongjiang Group:A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China. Island Arc, 16(1):156-172. https://doi.org/10.1111/j.1440-1738.2007.00564.x
      Wu, K.X., Hu, R.Z., Bi, X.W., et al., 2002. Summarization to the Tracing Metallogenic Material Sources by Means of Pb Isotope Bearing Ores.Geology Geochemistry, 30(3):73-79 (in Chinese with English abstract).
      Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554. https://doi.org/10.1360/04wd0130
      Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt.Earth Science, 44(5):1620-1646 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.036
      Yang, Y.C., Han, S.J., Sun, D.Y., et al., 2012. Geological and Geochemical Features and Geochronology of Porphyry Molybdenum Deposits in the Lesser Xing'an Range-Zhangguangcai Range Metallogenic Belt.Acta Petrologica Sinica, 28(2):379-390 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202003
      Zartman, R. E., Doe, B. R., 1981. Plumbotectonics:The Model.Tectonophysics, 75(1/2):135-162. https://doi.org/10.1016/0040-1951(81)90213-4
      Zhai, Y.S., Lin, X.D., 1993.Study of Ore Field Structures.Geological Publishing House, Beijing, 18 (in Chinese).
      Zhang, L.G, 1992. Present Status and Aspects of Lead Isotope Geology. Geology and Prospecting, 28(4):21-29 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/0309133307079057
      Zhang, L.L., Liu, C., Zhou, S., et al., 2014. Characteristics of Ore-Bearing Granites and Ore-Forming Age of the Huojihe Molybdenum Deposit in Lesser Xing'an Range. Acta Petrologica Sinica, 30(11):3419-3431 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411024
      Zhang, Q., Pan, J.Y., Shao, S.X., 2000. An Interpretation of Ore Lead Sources from Lead Isotopic Compositions of Some Ore Deposits in China.Geochimica, 29(3):231-238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200003004
      Zhang, Q., Ran, H., Li, C.D., 2012. A-Type Granite:What is the Essence?. Acta Petrologica et Mineralogica, 31(4):621-626 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8c2890609571b9a5f39733c2b59b003c
      Zhang, T.F., Guo, S., Xin, H.T., et al., 2019. Petrogenesis and Magmatic Evolution of Highly Fractionated Granite and Their Constraints on Sn-(Li-Rb-Nb-Ta) Mineralization in the Weilasituo Deposit, Inner Mongolia, Southern Great Xing'an Range, China.Earth Science, 44(1):248-267 (in Chinese withEnglish abstract). https://doi.org/10.3799/dqkx.2018.246
      Zhao, Z.G., Gao, L.M., 1998. Discussion about Standardization of Methods to Calculate δEu, δCe. Reporting of Standardization, (5):24-26 (in Chinese with English abstract).
      Zhou, J. B., Wilde, S. A., Zhang, X. Z., et al., 2009. The Onset of Pacific Margin Accretion in NE China:Evidence from the Heilongjiang High-Pressure Metamorphic Belt. Tectonophysics, 478(3/4):230-246. https://doi.org/10.1016/j.tecto.2009.08.009
      Zhu, B.Q., 1998. Isotope System Theory and Application to the Earth Sciences. Science Press, Beijing, 216-230 (in Chinese).
      陈静, 孙丰月, 潘彤, 等, 2012.黑龙江霍吉河钼矿成矿地质特征及花岗闪长岩年代学、地球化学特征.吉林大学学报(地球科学版), 42(S1):207-215. http://www.cqvip.com/qk/91256b/2012s1/1003447395.html
      陈贤, 刘家军, 张德会, 等, 2017.黑龙江翠宏山铁多金属矿床辉钼矿Re-Os定年及S-Pb同位素特征研究.岩石学报, 33(2):529-544. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201702014
      杜安道, 赵敦敏, 王淑贤, 等, 2001. Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试, 20(4):247-252. doi: 10.3969/j.issn.0254-5357.2001.04.002
      杜晓慧, 张勇, 2015.黑龙江霍吉河钼矿床成矿时代及岩石地球化学研究.资源与产业, 17(1):48-55. http://d.old.wanfangdata.com.cn/Periodical/kjcb201619099
      关庆彬, 李世超, 张超, 等, 2016.兴蒙造山带南缘东段和龙地区Ⅰ型花岗岩锆石U-Pb定年、地球化学特征及其地质意义.岩石学报, 32(9):2690-2706. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201609007
      郝宇杰, 任云生, 赵华雷, 等, 2013.黑龙江省翠宏山钨钼多金属矿床辉钼矿Re-Os同位素定年及其地质意义.吉林大学学报(地球科学版), 43(6):1840-1850. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201306015
      路远发, 2004. GeoKit:一个用VBA构建的地球化学工具软件包.地球化学, 33(5):459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004
      吴开兴, 胡瑞忠, 毕献武, 等, 2002.矿石铅同位素示踪成矿物质来源综述.地质地球化学, 30(3):73-81. doi: 10.3969/j.issn.1672-9250.2002.03.013
      许文良, 孙晨阳, 唐杰, 等, 2019.兴蒙造山带的基底属性与构造演化过程.地球科学, 44(5):1620-1646. http://d.old.wanfangdata.com.cn/Periodical/dqkx201905017
      杨言辰, 韩世炯, 孙德有, 等, 2012.小兴安岭-张广才岭成矿带斑岩型钼矿床岩石地球化学特征及其年代学研究.岩石学报, 28(2):379-390. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201202004.htm
      翟裕生, 林新多, 1993.矿田构造学.北京: 地质出版社, 18.
      张理刚, 1992.铅同位素地质研究现状及展望.地质与勘探, 28(4):21-29. http://www.cqvip.com/main/detail.aspx?id=722880
      张琳琳, 刘翠, 周肃, 等, 2014.小兴安岭霍吉河钼矿区含矿花岗岩类特征及成矿年龄.岩石学报, 30(11): 3419-3431. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411024
      张乾, 潘家永, 邵树勋, 2000.中国某些金属矿床矿石铅来源的铅同位素诠释.地球化学, 29(3):231-238. doi: 10.3321/j.issn:0379-1726.2000.03.004
      张旗, 冉皞, 李承东, 2012.A型花岗岩的实质是什么?.岩石矿物学杂志, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
      张天福, 郭硕, 辛后田, 等, 2019.大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn-(Li-Rb-Nb-Ta)多金属成矿作用的制约.地球科学, 44(1):248-267. http://d.old.wanfangdata.com.cn/Periodical/dqkx201901018
      赵志根, 高良敏, 1998. δEu、δCe计算方法的标准化问题.标准化报道, (5):24-26. http://www.cnki.com.cn/Article/CJFDTotal-BZBD805.008.htm
      朱炳泉, 1998.地球科学中同位素体系理论与应用.北京: 科学出版社, 216-230.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(5)

      Article views (1907) PDF downloads(56) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return