• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 5
    May  2020
    Turn off MathJax
    Article Contents
    Li Rucao, Chen Huayong, Li Guanghui, Feng Yuzhou, Xiao Bing, Han Jinsheng, Deng Changzhou, Shi Huilin, 2020. Geological Characteristics and Application of Short Wavelength Infra-Red Technology (SWIR) in the Fukeshan Porphyry Copper Deposit in the Great Xing'an Range Area. Earth Science, 45(5): 1517-1530. doi: 10.3799/dqkx.2019.192
    Citation: Li Rucao, Chen Huayong, Li Guanghui, Feng Yuzhou, Xiao Bing, Han Jinsheng, Deng Changzhou, Shi Huilin, 2020. Geological Characteristics and Application of Short Wavelength Infra-Red Technology (SWIR) in the Fukeshan Porphyry Copper Deposit in the Great Xing'an Range Area. Earth Science, 45(5): 1517-1530. doi: 10.3799/dqkx.2019.192

    Geological Characteristics and Application of Short Wavelength Infra-Red Technology (SWIR) in the Fukeshan Porphyry Copper Deposit in the Great Xing'an Range Area

    doi: 10.3799/dqkx.2019.192
    • Received Date: 2019-05-14
    • Publish Date: 2020-05-15
    • The Fukeshan copper depositis one of the major prospecting breakthroughs recently made in Heilongjiang Province. After detailed field work and microscopic observation,we found that this deposit has typical porphyry style characteristics. Out study shows that the diorite porphyry is the mineralization-causative porphyry. The emplacement of the diorite porphyry caused the potassic alteration,phyllicalteration and latest age chlorite-pyrite alteration in and around this porphyry. Mineralization in the Fukeshan deposit is mainly associated with phyllic alteration. Mineralization is mostly confined within diorite porphyry and granodiorite. Distribution of alteration and the causative diorite porphyry indicate that there may be a large-scale causative porphyry at depth in the southwest of the deposit. Detailed SWIR study indicates that the Pos2200 of muscovite and Pos2250 of chlorite are controlled by the composition of the original altered minerals,thus not suitable to be used as a vector for exploration. The IC values of muscovite group and MnO concentration in chlorite are controlled by temperature and can be used to be a vector to find the hydrothermal center at Fukeshan.This research highlights that the combination of alteration mapping and SWIR analysis can be of great help in mineral exploration.

       

    • loading
    • Chang, Z.S., Yang, Z.M., 2012. Evaluation of Inter-Instrument Variations among Short Wavelength Infrared (SWIR) Devices. Economic Geology, 107:1479-1488. doi: 10.2113/econgeo.107.7.1479
      Chen, S.B., Huang, B.Q., Li, C., et al., 2018. Alteration and Mineralization of the Yuhai Cu Deposit in Eastern Tianshan, Xinjiang and Applications of Short Wavelength Infra-Red (SWIR) in Exploration.Earth Science, 43(9):2911-2928 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.156
      Chen, Y. J., Chen, H. Y., Liu, Y. L., et al., 2000. Progress and Records in the Study of Endogenetic Mineralization during Collisional Orogenesis. Chinese Science Bulletin, 45(1):1-10. https://doi.org/10.1007/bf02884893
      Chen, Y. J., Chen, H. Y., Zaw, K., et al., 2007. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China:An Overview. Ore Geology Reviews, 31(1-4):139-169. https://doi.org/10.1016/j.oregeorev.2005.01.001
      Chen, Y.J., Zhai, M.G., Jiang, S.Y., et al., 2009. Significant Achievements and Open Issues in Study of Orogenesis and Metallogenesis Surrounding the North China Continent. Acta Petrologica Sinica, 25(11):2695-2726 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200911001
      Chen, Y.J., Zhang, C., Li, N., et al., 2012. Geology of the Mo Deposits in Northeast China. Journal of Jilin University (Earth Science Edition), 42(5):1223-1268 (in Chinese with English abstract)
      Chen, Y. J., Zhang, C., Wang, P., et al., 2017. The Mo Deposits of Northeast China:A Powerful Indicator of Tectonic Settings and Associated Evolutionary Trends. Ore Geology Reviews, 81:602-640. https://doi.org/10.1016/j.oregeorev.2016.04.017
      Cooke, D. R., Baker, M., Hollings, P., et al., 2014. New Advances in Detecting the Distal Geochemical Footprints of Porphyry Systems-Epidote Mineral Chemistry as a Tool for Vectoring and Fertility Assessments.In: Kelley, K. D., Golden, H. C., eds., Building Exploration Capability for the 21st Century. Society of Economic Geologists, New York.
      Deng, C. Z., Sun, D. Y., Han, J. S., et al., 2019. Late-Stage Southwards Subduction of the Mongol-Okhotsk Oceanic Slab and Implications for Porphyry CuMo Mineralization:Constraints from Igneous Rocks Associated with the Fukeshan Deposit, NE China. Lithos, 326/327:341-357. https://doi.org/10.1016/j.lithos.2018.12.030
      Deng, J.F., Zhao, G.C., Su, S.G., et al., 2005. Structure Overlap and Tectonic Setting of Yanshanorogenic Belt in Yanshan Era. Geotectonica et Metalbgenia, 105:157-165 (in Chinese with English abstract)
      Duke, E. F., 1994. Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress:Implications for Remote Sensing. Geology, 22(7):621. https://doi.org/10.1130/0091-7613(1994)0220621:nisomt>2.3.co; 2 doi: 10.1130/0091-7613(1994)0220621:nisomt>2.3.co;2
      Herrmann, W., Blake, M., Doyle M., et al., 2001. Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5):939-955. https://doi.org/10.2113/96.5.939
      Hu, J.M., Liu, X.W., Zhao, Y., et al., 2004. On Yanshan Intraplate Orogene:An Example from Taiyanggouarea, Lingyuan, Western Liaoning Province, Northeast China. Earth Science Frontiers, 11(3):255-271 (in Chinese with English abstract).
      Huang, J. H., Chen, H. Y., Han, J. S., et al., 2018. Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu-Zn Deposit, Eastern Tianshan, NW China. Ore Geology Reviews, 100:263-279. https://doi.org/10.1016/j.oregeorev.2017.02.037
      Jones, S., Herrmann, W., Gemmell, J. B., 2005. Short Wavelength Infrared Spectral Characteristics of the HW Horizon:Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100(2):273-294. https://doi.org/10.2113/100.2.273
      Laakso, K., Peter, J. M., Rivard, B., etal., 2016. Short-Wave Infrared Spectral and Geochemical Characteristics of Hydrothermal Alteration at the Archean Izok Lake Zn-Cu-Pb-Ag Volcanogenic Massive Sulfide Deposit, Nunavut, Canada: Application in Exploration Target Vectoring.Economic Geology, 111(5): 1223-1239. https: //doi.org/10.2113/econgeo.111.5.1223
      Laakso, K., Rivard, B., Peter, J. M., et al., 2015. Application of Airborne, Laboratory, and Field Hyperspectral Methods to Mineral Exploration in the Canadian Arctic:Recognition and Characterization of Volcanogenic Massive Sulfide-Associated Hydrothermal Alteration in the Izok Lake Deposit Area, Nunavut, Canada. Economic Geology, 110(4):925-941. https://doi.org/10.2113/econgeo.110.4.925
      Li, N., Chen, Y. J., Ulrich, T., et al., 2012. Fluid Inclusion Study of the Wunugetu Cu-Mo Deposit, Inner Mongolia, China. Mineralium Deposita, 47(5):467-482. https://doi.org/10.1007/s00126-011-0384-1
      Liu, J.M., Zhang, R., Zhang, Q.Z, 2004. The Regional Metallogeny of Da Hinggan Ling, China. Earth Science Frontiers, 11(1): 269-277 (in Chinese with English abstract).
      Pontual, S., 2001. Implementing Field-Based and Hy Logging Spectral Datasets in Exploration and Mining. AusSpec International, Unpublished Manual.
      Post, J. L., Noble, P. N., 1993. The Near-Infrared Combination Band Frequencies of Dioctahedral Smectites, Micas, and Illites. Clays and Clay Minerals, 41(6):639-644. https://doi.org/10.1346/ccmn.1993.0410601
      Qi, J.P., Chen, Y.J., Pirajno, F, 2005. Geological Characteristics and Tectonic Setting of the Epithermal Deposits in the Northeast China. Journal of Mineralogy and Petrology, 25(2): 47-59 (in Chinese with English abstract).
      Shao, J.A., Zhang, L.Q., Mou, B.L., 1999. Magmatism in the Mesozoic Extending Orogenic Process of Da Hinggan MTS. Earth Science Frontiers, 6(4):339-346 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy199904017
      Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1):3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      Sun, W.L., Peng, S.X., Bai, J.K., et al., 2018. Fluid Inclusions and Geochronology of Wulunbulake Copper Deposit in Xinjiang. Earth Science, 43(12):4475-4489 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812016
      Thompson, A., Scott, K., Huntington, J., et al., 2009. Mapping Mineralogy with Reflectance Spectroscopy:Examples from Volcanogenic Massive Sulfide Deposits. Reviews in Economic Geology, 16:25-40.
      Wang, H. Z., Mo, X. X., 1995. An Outline of the Tectonic Evolution of China. Episodes, 18(1/2):6-16. https://doi.org/10.18814/epiiugs/1995/v18i1.2/003
      Wu, G., Chen, Y.J., Sun, F.Y., et al., 2006. Geological Characteristics and Tectonic Settings of Gold Deposits in the Central Segment of the Mongolia-Okhotsk Metallogenic Belt. Mineral Deposits, 25(S1):51-54 (in Chinese with English abstract)
      Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt. Tectonics, 22(6):00-00. https://doi.org/10.1029/2002tc001484
      Yang, K., Huntington, J., 1996. Spectral Signatures of Hydrothermal Alteration in the Metasediments at Dead Bullock Soak, Tanami Desert, Northern Territory. Australian Journal of Earth Sciences, 25:257.
      Yang, K., Lian, C., Huntington, J. F., et al., 2005. Infrared Spectral Reflectance Characterization of the Hydrothermal Alteration at the Tuwu Cu-Au Deposit, Xinjiang, China. Mineralium Deposita, 40(3):324-336. https://doi.org/10.1007/s00126-005-0479-7
      Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2012. Application of Short Wavelength Infrared (SWIR) Technique in Exploration of Poorly Eroded Porphyry Cu District:ACase Study of Niancun Ore District, Tibet. Mineral Deposits, 31(4):699-717 (in Chinese with English abstract).
      Zhang, G., Lian, C.Y., Yuan, C.H., 2004. Application of SWIR Reflectance Spectroscopy to Identify the Alteration Minerals in the Pulang Porphyry Copper Ore District, Yunnan Province.Earth Science Frontiers, 11(4):460-460 (in Chinese with English abstract).
      Zhang, S.T., Chen, H.Y., Zhang, X.B., et al., 2017. Application of Short Wavelength Infrared (SWIR) Technique to Exploration of Skarn Deposit:A Case Study of Tonglvshan Cu-Fe-Au Deposit, Edongnan (Southeast Hubei) Ore Concentration Area. Mineral Deposits, 36(6):1263-1288 (in Chinese with English abstract).
      Zhao, Y., Xu, G., Zhang, S.H., et al., 2004. Yanshanian Movement and Conversion Oftectonic Regimes in East Asia. Earth Science Frontiers, 11(3):319-328 (in Chinese with English abstract).
      Zheng, H.T., Zheng, Y.Y., Xu, J., et al., 2018. Zircon U-Pb Ages and Petrogenesis of Ore-Bearing Porphyry for Qingcaoshan Porphyry Cu-Au Deposit, Tibet. Earth Science, 43(8):2858-2874 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808023
      Zorin, Y. A., Zorina, L. D., Spiridonov, A. M., et al., 2001. Geodynamic Setting of Gold Deposits in Eastern and Central Trans-Baikal (Chita Region, Russia). Ore Geology Reviews, 17(4):215-232. https://doi.org/10.1016/s0169-1368(00)00015-9
      陈寿波, 黄宝强, 李琛, 等, 2018.新疆东天山玉海铜矿蚀变矿化特征及SWIR勘查应用研究.地球科学, 43(9):2911-2928. doi: 10.3799/dqkx.2018.156
      陈衍景, 翟明国, 蒋少涌, 2009.华北大陆边缘造山过程与成矿研究的重要进展和问题.岩石学报, 25:3-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200911001
      陈衍景, 张成, 李诺, 等, 2012.中国东北钼矿床地质.吉林大学学报(地球科学版), 42:1223-1268.
      邓晋福, 赵国春, 苏尚国, 等, 2005.燕山造山带燕山期构造叠加及其大地构造背景.大地构造与成矿学, 29:3-11. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200502001
      胡健民, 刘晓文, 赵越, 等, 2004.燕山板内造山带早期构造变形演化:以辽西凌源太阳沟地区为例.地学前缘, 11(3):255-271. doi: 10.3321/j.issn:1005-2321.2004.03.025
      刘建明, 张锐, 张庆洲, 2004.大兴安岭地区的区域成矿特征.地学前缘, 11(1):269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024
      祁进平, 陈衍景, Pirajno, F., 2005.东北地区浅成低温热液矿床的地质特征和构造背景.矿物岩石, 25(2):47-59. doi: 10.3969/j.issn.1001-6872.2005.02.009
      邵济安, 张履桥, 牟保磊, 1999.大兴安岭中生代伸展造山过程中的岩浆作用.地学前缘, 6:339-346. doi: 10.3321/j.issn:1005-2321.1999.04.017
      孙万龙, 彭素霞, 白建科, 等, 2018.新疆乌伦布拉克铜矿流体包裹体特征及含矿岩体年代学.地球科学, 43(12):4475-4489 doi: 10.3799/dqkx.2018.166
      武广, 陈衍景, 孙丰月, 等, 2006.蒙古-鄂霍茨克成矿带中段金矿床地质特征及构造背景.矿床地质, 25(S1):51-54. http://d.old.wanfangdata.com.cn/Conference/6278189
      杨志明, 侯增谦, 杨竹森, 等, 2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用:以西藏念村矿区为例.矿床地质, 31(4):699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004
      章革, 连长云, 元春华, 2004. PIMA在云南普朗斑岩铜矿矿物识别中的应用.地学前缘, 11:460-460. doi: 10.3321/j.issn:1005-2321.2004.04.036
      张世涛, 陈华勇, 张小波, 等, 2017.短波红外光谱技术在矽卡岩型矿床中的应用:以鄂东南铜绿山铜铁金矿床为例.矿床地质, 36(6):1263-1288. http://d.old.wanfangdata.com.cn/Periodical/kcdz201706002
      郑海涛, 郑有业, 徐净, 等, 2018.西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因.地球科学, 43(8):2858-2874. doi: 10.3799/dqkx.2018.111
      赵越, 徐刚, 张拴宏, 等, 2004.燕山运动与东亚构造体制的转变.地学前缘, 11(3):319-328. doi: 10.3321/j.issn:1005-2321.2004.03.030
      郑海涛, 郑有业, 徐净, 等, 2018.西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因.地球科学, 43(8):336-352. doi: 10.3799/dqkx.2018.111
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)

      Article views (2089) PDF downloads(87) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return