• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 5
    May  2020
    Turn off MathJax
    Article Contents
    Chen Guohui, Lu Shuangfang, Liu Keyu, Xu Chenxi, Xue Qingzhong, Tian Shansi, Li Jinbu, Lu Shudong, Zhang Yuying, 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194
    Citation: Chen Guohui, Lu Shuangfang, Liu Keyu, Xu Chenxi, Xue Qingzhong, Tian Shansi, Li Jinbu, Lu Shudong, Zhang Yuying, 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194

    Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls

    doi: 10.3799/dqkx.2019.194
    • Received Date: 2019-08-06
    • Publish Date: 2020-05-15
    • The adsorption gas is one of the main occurrence states of the shale gas, so the accurate evaluation of the adsorption gas amount is important for exploration. The key for the applicability of the models lies in whether the adsorption model obeys the occurrence state and its micro mechanisms of shale gas on the pore walls, which is the critical factor influencing the accuracy of the evaluation of the adsorption gas amount. The occurrence state and its micro mechanisms of shale gas on the pore walls are investigated in this study, aiming at optimizing the adsorption model. By the Grand Canonical Monte Carlo (GCMC) method, the adsorption behavior of CH4 in both organic and illite pores was simulated, and the molecular dynamic (MD) was performed on the molecular structure at a certain temperature and pressure. Based on the simulations, the gas distribution, the interaction distribution and density field were investigated to document the occurrence state and its micro mechanisms of shale gas on pore walls. It is found that the adsorption of shale gas on pore walls is not the single layer adsorption, and the adsorption phase can be divided into the strong adsorption layer, the weak adsorption layer and the trough of adsorption layer. The strong adsorption layer is mainly adsorbed by the pore walls, while the weak adsorption layer and the trough of adsorption layer are not only adsorbed by pore walls, but also adsorbed by the adsorption layers. This is inconsistent with the hypothetical condition of the Langmiur model or the BET model, so the reasonability of the models and the accuracy of the evaluating results would be limited. The occurrence state and its micro mechanisms of shale gas on pore walls revealed in this study can provide theoretical basis for optimizing and establishing adsorption models.

       

    • loading
    • Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of American Chemical Society, 60:309-319. doi: 10.1021/ja01269a023
      Cao, T.T., Song, Z.G., Wang, S.B., et al., 2015. A Comparative Study of the Specific Surface Area and Pore Structure of Different Shales and Their Kerogens.Science in China (Seires D:Earth Sciences), 45(2):139-151(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2fd16ef231ac41d575032258529366e1&encoded=0&v=paper_preview&mkt=zh-cn
      Chareonsuppanimit, P., Mohammad, S.A., Robinson, R.L., et al., 2012. High-Pressure Adsorption of Gases on Shales:Measurements and Modeling. International Journal of Coal Geology, 95:34-46. doi: 10.1016/j.coal.2012.02.005
      Chen, G., Lu, S., Liu, K., et al., 2019a. Critical Factors Controlling Shale Gas Adsorption Mechanisms on Different Minerals Investigated Using GCMC Simulations. Marineand Petroleum Geology, 100:31-42. doi: 10.1016/j.marpetgeo.2018.10.023
      Chen, G., Lu, S., Liu, K., et al., 2019b. Investigation of Pore Size Effects on Adsorption Behavior of Shale Gas. Marineand Petroleum Geology, 109:1-8. doi: 10.1016/j.marpetgeo.2019.06.011
      Chen, G., Lu, S., Zhang, J., et al., 2016. Research of CO2 and N2 Adsorption Behavior in K-Illite Slit Pores by GCMC Method. Scientific Reports, 6:1-10. doi: 10.1038/s41598-016-0001-8
      Chen, G., Lu, S., Zhang, J., et al., 2017. Keys to Linking GCMC Simulations and shale Gas Adsorption Experiments. Fuel, 199:14-21. doi: 10.1016/j.fuel.2017.02.063
      Cygan, R.T., Liang, J.J., Kalinichev, A.G., 2004. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. Journal of Physical Chemistry B, 108:1255-1266. doi: 10.1021/jp0363287
      Dai, J., Zou, C., Liao, S., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin. Organic Geochemistry, 74:3-12. doi: 10.1016/j.orggeochem.2014.01.018
      Fan, E., Tang, S., Zhang, C., et al., 2014. Methane Sorption Capacity of Organics and Clays in High-over Matured Shale-Gas Systems. Energy, Exploration & Exploitation, 32:927-942. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44e6b7c4960ed826cae0b58628e95c5d
      Gasparik, M., Rexer, T.F.T., Aplin, A.C., et al., 2014. First International Inter-Laboratory Comparison of High-Pressure CH4, CO2 and C2H6 Sorption Isotherms on Carbonaceous Shales. International Journal of Coal Geology, 132:131-146. doi: 10.1016/j.coal.2014.07.010
      Gensterblum, Y., Busch, A., Krooss, B.M., 2014. Molecular Concept and Experimental Evidence of Competitive Adsorption of H2O, CO2 and CH4 on Organic Material. Fuel, 115:581-588. doi: 10.1016/j.fuel.2013.07.014
      He, Z.L., Hu, Z.Q., Zhang, Y.Y., 2016. The Main Factors of Shale Gas Enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and Its Adjacent Areas. Earth Science Frontiers, 23(2):8-17 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201602002
      Heller, R., Zoback, M., 2014. Adsorption of Methane and Carbon Dioxide on Gas Shale and Pure Mineral Samples. Journal of Unconventional Oil and Gas Resources, 8:14-24. doi: 10.1016/j.juogr.2014.06.001
      Hill, D.G., Nelson, C., 2000. Gas Productive Fractured Shales:An Overview and Update. Gas Tips, 6:4-13. http://cn.bing.com/academic/profile?id=e3cf7d4f22ed6ef98e5079913ace7d76&encoded=0&v=paper_preview&mkt=zh-cn
      Huang, L., Ning, Z., Wang, Q., et al., 2018. Molecular Simulation of Adsorption Behaviors of Methane, Carbon Dioxide and Their Mixtures on Kerogen:Effect of Kerogen Maturity and Moisture Content. Fuel, 211:159-172. doi: 10.1016/j.fuel.2017.09.060
      Ji, L., Zhang, T., Milliken, K.L., et al., 2012. Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks. Applied Geochemistry, 27:2533-2545. doi: 10.1016/j.apgeochem.2012.08.027
      Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1):1-10. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201601001
      Jorgensen, W.L., Schyman, P., 2012. Treatment of Halogen Bonding in the OPLS-AA Force Field; Application to Potent Anti-HIV Agents. Journal of Chemical Theory & Computation, 8:3895-3801. http://cn.bing.com/academic/profile?id=7423f2eae51c7a129199839d58af5331&encoded=0&v=paper_preview&mkt=zh-cn
      Krooss, B.M., van Bergen, F., Gensterblum, Y., et al., 2002. High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals. International Journal of Coal Geology, 51:69-92. doi: 10.1016/S0166-5162(02)00078-2
      Langmuir, I., 1916. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. Journal of American Chemical Society, 38:2221-2295. doi: 10.1021/ja02268a002
      Liu, Y., Wilcox, J., 2012. Molecular Simulation of CO2 Adsorption in Micro- and Mesoporous Carbons with Surface Heterogeneity. International Journal of Coal Geology, 104:83-95. doi: 10.1016/j.coal.2012.04.007
      Liu, Y., Zhu, Y., Li, W., et al., 2016. Molecular Simulation of Methane Adsorption in Shale Based on Grand Canonical Monte Carlo Method and Pore Size Distribution. Journal of Natural Gas Science and Engineering, 30:119-126. doi: 10.1016/j.jngse.2016.01.046
      Lorentz, H.A., 1881. Nachtrag zu der Abhandlung:Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Annalen der Physik, 248:660-661. doi: 10.1002/andp.18812480414
      Lu, S.F., Shen, B.J., Xu, C.X., et al., 2018. Study on Adsorption Behavior and Mechanism of Shale Gas by Using GCMC Molecular Simulation. Earth Science, 39(5):425-433 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805037
      Martin, M.G., Siepmann, J.I., 1998. Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes. Journal of Physical Chemistry B, 102:2569-2577. doi: 10.1021/jp972543+
      Mosher, K., He, J., Liu, Y., et al., 2013. Molecular Simulation of Methane Adsorption in Micro- and Mesoporous Carbons with Applications to Coal and Gas Shale Systems. International Journal of Coal Geology, 109-110:36-44. doi: 10.1016/j.coal.2013.01.001
      Potoff, J.J., Siepmann, J.I., 2001. Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen. AiChE Journal, 47:1676-1682. doi: 10.1002/aic.690470719
      Szczerba, M., Derkowski, A., Kalinichev, A.G., et al., 2015. Molecular Modeling of the Effects of 40Ar Recoil in Illite Particles on Their K-Ar Isotope Dating. Geochimica et Cosmochimica Acta, 159:162-176. doi: 10.1016/j.gca.2015.03.005
      Tian, H., Li, T., Zhang, T., et al., 2016. Characterization of Methane Adsorption on Overmature Lower Silurian-Upper Ordovician Shales in Sichuan Basin, Southwest China:Experimental Results and Geological Implications. International Journal of Coal Geology, 156:36-49. doi: 10.1016/j.coal.2016.01.013
      Wang, S., Feng, Q., Javadpour, F., et al., 2016. Breakdown of Fast Mass Transport of Methane through Calcite Nanopores. Journal of Physical Chemistry C, 120(26):14260-14269. doi: 10.1021/acs.jpcc.6b05511
      Wang, S., Feng, Q., Javadpour, F., et al., 2019. Competitive Adsorption of Methane and Ethane in Montmorillonite Nanopores of Shale at Supercritical Conditions:A Grand Canonical Monte Carlo Simulation Study. Chemical Engineering Journal, 355:76-90. doi: 10.1016/j.cej.2018.08.067
      Wang, S.B., Song, Z.G., Cao, T.T., 2013. Insights from Isotherm Adsorption of Methane on Shale and Keroge. The 14th National Conference on Organic Geochemistry, Zhuhai (in Chinese).
      Xiong, J., Liu, X., Liang, L., et al., 2017. Adsorption of Methane in Organic-Rich Shale Nanopores:An Experimental and Molecular Simulation Study. Fuel, 200:299-315. doi: 10.1016/j.fuel.2017.03.083
      Zhai, G., Wang, Y., Bao, S., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7):1057-1068 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707003
      Zhang, J., Clennell, M.B., Liu, K., et al., 2016. Methane and Carbon Dioxide Adsorption on Illite. Energy & Fuels, 30:10643-10652. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eda468932dbbcb7d6f097e81d92edcaa
      Zhao, J., Jin, Z., Hu, Q., et al., 2018. Mineral Composition and Seal Condition Implicated in Pore Structure Development of Organic-Rich Longmaxi Shales, Sichuan Basin, China. Marineand Petroleum Geology, 98:507-522. doi: 10.1016/j.marpetgeo.2018.09.009
      曹涛涛, 宋之光, 王思波, 等, 2015.不同页岩及干酪根比表面积和孔隙结构的比较研究.中国科学(D辑:地球科学), 45(2):139-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201502002
      何治亮, 聂海宽, 张钰莹, 2016.四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析.地学前缘, 23(2):8-17. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602002
      金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001
      卢双舫, 沈博健, 许晨曦, 等, 2018.利用GCMC分子模拟技术研究页岩气的吸附行为和机理.地球科学, 39(5):425-433. doi: 10.3799/dqkx.2018.430
      王思波, 宋之光, 曹涛涛, 2013.页岩有机质和干酪根对甲烷等温吸附实验的认识.珠海: 第十四届全国有机地球化学学术会议.
      翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7): 1057-1068. doi: 10.3799/dqkx.2017.085
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)

      Article views (1580) PDF downloads(106) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return