Citation: | Guo Wei, Lin Xian, Hu Shenghong, 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Science, 45(4): 1362-1374. doi: 10.3799/dqkx.2019.199 |
Albrecht, M., Derrey, I. T., Horn, I., et al., 2014. Quantification of Trace Element Contents in Frozen Fluid Inclusions by UV-Fs-LA-ICP-MS Analysis. Journal of Analytical Atomic Spectrometry, 29(6):1034-1041. https://doi.org/10.1039/c4ja00015c doi: 10.1039/C4JA00015C
|
Allan, M. M., Yardley, B.W.D., Forbes, L.J. et al., 2005. Validation of LA-ICP-MS Fluid Inclusion Analysis with Synthetic Fluid Inclusions. American Mineralogist, 90(11-12):1767-1775. https://doi.org/10.2138/am.2005.1822
|
Audétat, A., Günther, D., Heinrich, C.A., 1998. Formation of a Magmatic-Hydrothermal Ore Deposit:Insights with LA-ICP-MS Analysis of Fluid Inclusions. Science, 279(5359):2091-2094. https://doi.org/10.1126/science.279.5359.2091
|
Bleiner, D., Günther, D., 2001. Theoretical Description and Experimental Observation of Aerosol Transport Processes in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 16(5):449-456. https://doi.org/10.1039/b009729m doi: 10.1039/B009729M
|
Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions. Geochimica et Cosmochimica Acta, 57(3):683-684. https://doi.org/10.1016/0016-7037(93)90378-a doi: 10.1016/0016-7037(93)90378-A
|
Borisova, A. Y., Thomas, R., Salvi, S., et al., 2012. Tin and Associated Metal and Metalloid Geochemistry by Femtosecond LA-ICP-QMS Microanalysis of Pegmatite-Leucogranite Melt and Fluid Inclusions:New Evidence for Melt-Melt-Fluid Immiscibility. Mineralogical Magazine, 76(1):91-113. https://doi.org/10.1180/minmag.2012.076.1.91
|
Burisch, M., Walter, B. F., Gerdes, A., et al., 2018. Late-Stage Anhydrite-Gypsum-Siderite-Dolomite-Calcite Assemblages Record the Transition from a Deep to a Shallow Hydrothermal System in the Schwarzwald Mining District, SW Germany. Geochimica et Cosmochimica Acta, 223:259-278. https://doi.org/10.1016/j.gca.2017.12.002
|
Chang, J., Li, J. W., Audétat, A., 2018. Formation and Evolution of Multistage Magmatic-Hydrothermal Fluids at the Yulong Porphyry Cu-Mo Deposit, Eastern Tibet:Insights from LA-ICP-MS Analysis of Fluid Inclusions. Geochimica et Cosmochimica Acta, 232:181-205. https://doi.org/10.1016/j.gca.2018.04.009
|
Chen, P. W., Zeng, Q. D., Zhou, T. C., et al., 2019. Evolution of Fluids in the Dasuji Porphyry Mo Deposit on the Northern Margin of the North China Craton:Constraints from Microthermometric and LA-ICP-MS Analyses of Fluid Inclusions. Ore Geology Reviews, 104:26-45. https://doi.org/10.1016/j.oregeorev.2018.10.012 http://cn.bing.com/academic/profile?id=579777ef0f68ee3dc23e9d19438fb34e&encoded=0&v=paper_preview&mkt=zh-cn
|
Eggins, S. M., Kinsley, L. P. J., Shelley, J. M. G., 1998. Deposition and Element Fractionation Processes during Atmospheric Pressure Laser Sampling for Analysis by ICP-MS. Applied Surface Science, 127-129:278-286. https://doi.org/10.1016/s0169-4332(97)00643-0 doi: 10.1016/S0169-4332(97)00643-0
|
Fernández, B., Claverie, F., Pécheyran, C., et al., 2007. Direct Analysis of Solid Samples by fs-LA-ICP-MS. TrAC Trends in Analytical Chemistry, 26(10):951-966. https://doi.org/10.1016/j.trac.2007.08.008
|
Fu, L.B., Wei, J.H., Zhang, D.H., et al., 2015. A Review of LA-ICP-MS Analysis for Individual Fluid Inclusions and Its Applications in Ore Deposits. Journal of Central South University (Science and Technology), 46(10):3832-3840 (in Chinese with English abstract). doi: 10.11817/j.issn.1672-7207.2015.10.037
|
Fusswinkel, T., Giehl, C., Beermann, O., et al., 2018. Combined LA-ICP-MS Microanalysis of Iodine, Bromine and Chlorine in Fluid Inclusions. Journal of Analytical Atomic Spectrometry, 33(5):768-783. https://doi.org/10.1039/c7ja00415j doi: 10.1039/C7JA00415J
|
Fusswinkel, T., Wagner, T., Sakellaris, G., 2017. Fluid Evolution of the Neoarchean Pampalo Orogenic Gold Deposit (E Finland):Constraints from LA-ICPMS Fluid Inclusion Microanalysis. Chemical Geology, 450:96-121. https://doi.org/10.1016/j.chemgeo.2016.12.022
|
Ghazi, A. M., Shuttleworth, S., 2000. Trace Element Determination of Single Fluid Inclusions by Laser Ablation ICP-MS:Applications for Halites from Sedimentary Basins. The Analyst, 125(1):205-210. https://doi.org/10.1039/a908980b http://cn.bing.com/academic/profile?id=2ee7d9d3bed943a49f3aef12a4df4d07&encoded=0&v=paper_preview&mkt=zh-cn
|
Gomes, S. D., Berger, S., Figueiredo e Silva, R. C., et al., 2018. Oxide Chemistry and Fluid Inclusion Constraints on the Formation of Itabirite-Hosted Iron Ore Deposits at the Eastern Border of the Southern Espinhaço Range, Brazil. Ore Geology Reviews, 95:821-848. https://doi.org/10.1016/j.oregeorev.2018.03.025
|
Guillong, M., Latkoczy, C., Seo, J. H., et al., 2008a. Determination of Sulfur in Fluid Inclusions by Laser Ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 23(12):1581-1589. https://doi.org/10.1039/b807383j
|
Guillong, M., Meier, D.L., Allan, M., et al., 2008b. Sills: A Matlab-Based Program for the Reduction of Laser Ablation ICP-MS Data of Homogeneous Materials and Inclusions. In: Sylvester, P., ed., Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series, 328-333.
|
Guillong, M., Pettke, T., 2012. Depth Dependent Element Ratios in Fluid Inclusion Analysis by Laser Ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 27(3):505-508. https://doi.org/10.1039/c2ja10147e
|
Günther, D., Audétat, A., Frischknecht, R., et al., 1998. Quantitative Analysis of Major, Minor and Trace Elements in Fluid Inclusions Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 13(4):263-270. https://doi.org/10.1039/a707372k doi: 10.1039/A707372K
|
Günther, D., Frischknecht, R., Müschenborn, H. J., et al., 1997. Direct Liquid Ablation:A New Calibration Strategy for Laser Ablation-ICP-MS Microanalysis of Solids and Liquids. Fresenius' Journal of Analytical Chemistry, 359(4-5):390-393. https://doi.org/10.1007/s002160050594
|
Günther, D., Hattendorf, B., 2005. Solid Sample Analysis Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. TrAC Trends in Analytical Chemistry, 24(3):255-265. https://doi.org/10.1016/j.trac.2004.11.017 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026541946/
|
Günther, D., Heinrich, C. A., 1999. Enhanced Sensitivity in Laser Ablation-ICP Mass Spectrometry Using Helium-Argon Mixtures as Aerosol Carrier. Journal of Analytical Atomic Spectrometry, 14(9):1363-1368. https://doi.org/10.1039/a901648a doi: 10.1039/A901648A
|
Guo, H. H., Audétat, A., 2018. Gold Diffusion into and out of Quartz-Hosted Fluid Inclusions during Re-Equilibration Experiments at 600-800℃ and 2 kbar. Chemical Geology, 476:1-10. https://doi.org/10.1016/j.chemgeo.2017.09.031
|
Guo, H. H., Audétat, A., Dolejš, D., 2018. Solubility of Gold in Oxidized, Sulfur-Bearing Fluids at 500-850℃ and 200-230 MPa:A Synthetic Fluid Inclusion Study. Geochimica et Cosmochimica Acta, 222:655-670. https://doi.org/10.1016/j.gca.2017.11.019
|
Halter, W. E., Pettke, T., Heinrich, C.A., 2002. The Origin of Cu/Au Ratios in Porphyry-Type Ore Deposits. Science, 296(5574):1844-1846. https://doi.org/10.1126/science.1070139 http://cn.bing.com/academic/profile?id=ea08911094a92ac7a0cdfc2ce62ba552&encoded=0&v=paper_preview&mkt=zh-cn
|
Harlaux, M., Borovinskaya, O., Frick, D.A., et al., 2015. Capabilities of Sequential and Quasi-Simultaneous LA-ICPMS for the Multi-Element Analysis of Small Quantity of Liquids (Pl to Nl):Insights from Fluid Inclusion Analysis. Journal of Analytical Atomic Spectrometry, 30(9):1945-1969. https://doi.org/10.1039/c5ja00111k doi: 10.1039/C5JA00111K
|
Heinrich, C. A., Günther, D., Audétat, A., et al., 1999. Metal Fractionation between Magmatic Brine and Vapor, Determined by Microanalysis of Fluid Inclusions. Geology, 27(8):755-758. https://doi.org/10.1130/0091-7613(1999)027 < 0755:mfbmba>2.3.co; 2 doi: 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
|
Heinrich, C. A., Pettke, T., Halter, W. E., et al., 2003. Quantitative Multi-Element Analysis of Minerals, Fluid and Melt Inclusions by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry. Geochimica et Cosmochimica Acta, 67(18):3473-3497. https://doi.org/10.1016/s0016-7037(03)00084-x http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0fd5986e3babe0790d5455e8b15751fb
|
Horn, I., Günther, D., 2003. The Influence of Ablation Carrier Gasses Ar, He and Ne on the Particle Size Distribution and Transport Efficiencies of Laser Ablation-Induced Aerosols:Implications for LA-ICP-MS. Applied Surface Science, 207(1-4):144-157. https://doi.org/10.1016/s0169-4332(02)01324-7 doi: 10.1016/S0169-4332(02)01324-7
|
Hu, S.H., Hu, Z.C., Liu, Y.C., et al., 2001. New Techniques of Major and Minor Elemental Analysis in Individual Fluid Inclusion-Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Earth Science Frontiers, (4):434-440 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200104026
|
Jian, W., Albrecht, M., Lehmann, B., et al., 2018. UV-fs-LA-ICP-MS Analysis of CO2-Rich Fluid Inclusions in a Frozen State:Example from the Dahu Au-Mo Deposit, Xiaoqinling Region, Central China. Geofluids, (1):1-17. https://doi.org/10.1155/2018/3692180
|
Lan, T.G., Hu, R.Z., Fan, H.R., et al., 2017. In-Situ Analysis of Major and Trace Elements in Fluid Inclusion and Quartz:LA-ICP-MS Method and Applications to Ore Deposits. Acta Petrologica Sinica, 33(10):3239-3262(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201710017.htm
|
Leisen, M., Boiron, M. C., Richard, A., et al., 2012a. Determination of Cl and Br Concentrations in Individual Fluid Inclusions by Combining Microthermometry and LA-ICPMS Analysis:Implications for the Origin of Salinity in Crustal Fluids. Chemical Geology, 330-331:197-206. https://doi.org/10.1016/j.chemgeo.2012.09.003
|
Leisen, M., Dubessy, J., Boiron, M. C., et al., 2012b. Improvement of the Determination of Element Concentrations in Quartz-Hosted Fluid Inclusions by LA-ICP-MS and Pitzer Thermodynamic Modeling of Ice Melting Temperature. Geochimica et Cosmochimica Acta, 90:110-125. https://doi.org/10.1016/j.gca.2012.04.040
|
Li, C. Y., Jiang, Y. H., Zhao, Y., et al., 2018. Trace Element Analyses of Fluid Inclusions Using Laser Ablation ICP-MS. Solid Earth Sciences, 3(1):8-15. https://doi.org/10.1016/j.sesci.2017.12.001 http://cn.bing.com/academic/profile?id=290178fbd6e420468cb6959e275485d7&encoded=0&v=paper_preview&mkt=zh-cn
|
Li, X.C., Fan, H.R., Hu, F.F., et al., 2010. An Analysis of the Individual Fluid Inclusion by LA-ICP-MS and Its Application to Ore Deposits. Mineral Deposits, 29(6):1017-1028 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201006006
|
Lindner, H., Autrique, D., Pisonero, J., et al., 2010. Numerical Simulation Analysis of Flow Patterns and Particle Transport in the HEAD Laser Ablation Cell with Respect to Inductively Coupled Plasma Spectrometry. Journal of Analytical Atomic Spectrometry, 25(3):295. https://doi.org/10.1039/b920905k http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6aa337b5fff9e5ebb8e4dfbc9b3a0939
|
Liu, C., Mao, X. L., Mao, S. S., et al., 2004. Nanosecond and Femtosecond Laser Ablation of Brass:Particulate and ICPMS Measurements. Analytical Chemistry, 76(2):379-383. https://doi.org/10.1021/ac035040a
|
Liu, H., Bi, X., Lu, H. et al., 2018. Nature and Evolution of Fluid Inclusions in the Cenozoic Beiya Gold Deposit, Sw China Genesis of the Wulong Gold Deposit, Northeastern North China Craton:Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations. Journal of Asian Earth Sciences, 161:35-56. https://doi.org/10.1016/j.jseaes.2018.04.034
|
Liu, Y. S., Hu, Z. C., Yuan, H. L., et al., 2007. Volume-Optional and Low-Memory (VOLM) Chamber for Laser Ablation-ICP-MS:Application to Fiber Analyses. Journal of Analytical Atomic Spectrometry, 22(5):582. https://doi.org/10.1039/b701718a
|
Loucks, R. R., Mavrogenes, J.A., 1999. Gold Solubility in Supercritical Hydrothermal Brines Measured in Synthetic Fluid Inclusions. Science, 284(5423):2159-2163. https://doi.org/10.1126/science.284.5423.2159 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2798df058b1fad5e166b0d4b9945fbe
|
Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid Inclusion. Science Press, Beijing(in Chinese).
|
Ma, L., Li, Y.K., Wang, A.J., et al., 2014. An Analysis of the Individual Fluid Inclusion by LA-ICP-MS and SRXRF. Mineral Deposits, 33(S1):547-548 (in Chinese with English abstract).
|
Ni, P., Fan, H.R., Ding, J.Y., 2014. Progress in Fluid Inclusion. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1):1-5 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201201005
|
Pettke, T., 2008. Analytical Protocols for Element Concentration and Isotope Ratlo Measurements in Fluid Inclusions by LA-(MC-)ICP-MS. Mineralogical Association on Canada, 40:189-217
|
Pettke, T., Oberli, F., Audétat, A., et al., 2012. Recent Developments in Element Concentration and Isotope Ratio Analysis of Individual Fluid Inclusions by Laser Ablation Single and Multiple Collector ICP-MS. Ore Geology Reviews, 44:10-38. https://doi.org/10.1016/j.oregeorev.2011.11.001
|
Pokrovski, G. S., Akinfiev, N. N., Borisova, A. Y., et al., 2014. Gold Speciation and Transport in Geological Fluids:Insights from Experiments and Physical-Chemical Modelling. Geological Society, London, Special Publications, 402(1):9-70. https://doi.org/10.1144/sp402.4 doi: 10.1144/SP402.4
|
Pokrovski, G. S., Borisova, A. Y., Bychkov, A. Y., 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors. Reviews in Mineralogy and Geochemistry, 76(1):165-218. https://doi.org/10.2138/rmg.2013.76.6
|
Schlegel, T. U., Wälle, M., Steele-MacInnis, M., et al., 2012. Accurate and Precise Quantification of Major and Trace Element Compositions of Calcic-Sodic Fluid Inclusions by Combined Microthermometry and LA-ICPMS Analysis. Chemical Geology, 334:144-153. https://doi.org/10.1016/j.chemgeo.2012.10.001
|
Schlöglova, K., Walle, M., Heinrich, C.A., et al., 2017a. LA-ICP-MS Analysis of Fluid Inclusions:Contamination Effects Challenging Micro-Analysis of Elements Close to Their Detection Limit. Journal of Analytical Atomic Spectrometry, 32(5):1052-1063. https://doi.org/10.1039/c7ja00022g doi: 10.1039/C7JA00022G
|
Schlöglova, K., Walle, M., Heinrich, C.A. et al., 2017b. Copper, Gold and Bismuth Behavior in Magmatichydrothermal Systems:Fluid-Inclusion LA-ICP-MS Study. Mineral Resources to Discover, 1-4:95-98. http://cn.bing.com/academic/profile?id=55f783df21b5dab0e710d1aebf52b784&encoded=0&v=paper_preview&mkt=zh-cn
|
Seo, J. H., Guillong, M., Aerts, M., et al., 2011. Microanalysis of S, Cl, and Br in Fluid Inclusions by LA-ICP-MS. Chemical Geology, 284(1-2):35-44. https://doi.org/10.1016/j.chemgeo.2011.02.003 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=592b1121e8b29d934455f0402211895e
|
Seo, J. H., Guillong, M., Heinrich, C. A., 2009. The Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits. Earth and Planetary Science Letters, 282(1-4):323-328. https://doi.org/10.1016/j.epsl.2009.03.036
|
Seo, J. H., Zajacz, Z., 2016. Fractionation of Cl/Br during Fluid Phase Separation in Magmatic-Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 183:125-137. https://doi.org/10.1016/j.gca.2016.04.009
|
Shepherd, T. J., Chenery, S. R., 1995. Laser Ablation ICP-MS Elemental Analysis of Individual Fluid Inclusions:An Evaluation Study. Geochimica et Cosmochimica Acta, 59(19):3997-4007. https://doi.org/10.1016/0016-7037(95)00294-a doi: 10.1016/0016-7037(95)00294-A
|
Steele-MacInnis, M., Bodnar, R. J., Naden, J., 2011. Numerical Model to Determine the Composition of H2O-NaCl-CaCl2 Fluid Inclusions Based on Microthermometric and Microanalytical Data. Geochimica et Cosmochimica Acta, 75(1):21-40. https://doi.org/10.1016/j.gca.2010.10.002
|
Steele-MacInnis, M., Ridley, J., Lecumberri-Sanchez, P., et al., 2016. Application of Low-Temperature Microthermometric Data for Interpreting Multicomponent Fluid Inclusion Compositions. Earth-Science Reviews, 159:14-35. https://doi.org/10.1016/j.earscirev.2016.04.011
|
Stoffell, B., Appold, M. S., Wilkinson, J. J., et al., 2008. Geochemistry and Evolution of Mississippi Valley-Type Mineralizing Brines from the Tri-State and Northern Arkansas Districts Determined by LA-ICP-MS Microanalysis of Fluid Inclusions. Economic Geology, 103(7):1411-1435. https://doi.org/10.2113/gsecongeo.103.7.1411
|
Su, W., Heinrich, C. A., Pettke, T., et al., 2009. Sediment-Hosted Gold Deposits in Guizhou, China:Products of Wall-Rock Sulfidation by Deep Crustal Fluids. Economic Geology, 104(1):73-93. https://doi.org/10.2113/gsecongeo.104.1.73
|
Sun, H., Xiao, Y.L., 2009. Fluid Inclusion:Latest Development, Geological Applications and Prospect. Advances in Earth Science, 24(10):1105-21 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200910005
|
Sun, W.L., Peng, S.X., Bai, J.K., et al., 2018.Fluid Inclusions and Geochronology of Wulunbulake Copper Deposit in Xinjiang. Earth Science, 43(12):4475-4489(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812016
|
Sun, X.H., Hu, M.Y., Liu, C.L., et al., 2013. Composition Determination of Single Fluid Inclusions in Salt Minerals by Laser Ablation ICP-MS. Chinese Journal of Analytical Chemistry, 41(2):235-241(in Chinese with English abstract). doi: 10.1016/S1872-2040(13)60631-3
|
Tsui, T. F., Holland, H. D., 1979. The Analysis of Fluid Inclusions by Laser Microprobe. Economic Geology, 74(7):1647-1653. https://doi.org/10.2113/gsecongeo.74.7.1647
|
Ulrich, T., Günther, D., Heinrich, C. A., 1999. Gold Concentrations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits. Nature, 399(6737):676-679. https://doi.org/10.1038/21406
|
Wagner, T., Fusswinkel, T., Wälle, M., et al., 2016. Microanalysis of Fluid Inclusions in Crustal Hydrothermal Systems Using Laser Ablation Methods. Elements, 12(5):323-328. https://doi.org/10.2113/gselements.12.5.323
|
Wälle, M., Heinrich, C.A., 2014. Fluid Inclusion Measurements by Laser Ablation Sector-Field ICP-MS. Journal of Analytical Atomic Spectrometry, 29(6):1052-1057. https://doi.org/10.1039/c4ja00010b doi: 10.1039/C4JA00010B
|
Wang, L.J., Wang, Y.W., Wang, J.B., et al., 2006. Fluid-Forming of a Dajing Tin-Polymetallic Deposit in Inner Mongolia:Evidence of a Individual Fluid Inclusion Component of LA-ICP-MS. Chinese Science Bulletin, (10):1203-1210 (in Chinese).
|
Wei, N., Huang, F., Wang, Y., et al., 2018.Genesis of Yuanlingzhai Large Porphyry Molybdenum Deposits in East Section of Nanling:Evidence from Fluid Inclusions and Stable Isotope. Earth Science, 43(S2):135-148(in Chinese with English abstract.
|
Wilkinson, J. J., 2001. Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55(1-4):229-272. https://doi.org/10.1016/s0024-4937(00)00047-5 doi: 10.1016/S0024-4937(00)00047-5
|
Wilkinson, J. J., Stoffell, B., Wilkinson, C. C., et al., 2009. Anomalously Metal-Rich Fluids Form Hydrothermal Ore Deposits. Science, 323(5915):764-767. https://doi.org/10.1126/science.1164436
|
Yuan, H.L., Gao, S., Dai, M.N., et al., 2009.In Situ Strontium Isotope Analysis of Fluid Inclusion Using LA-MC-ICPMS. Bulletin of Mineralogy, Petrology and Geochemistry, 28(4):313-317(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200904001
|
Zhang, W.D., Wu, X.B., Deng, X.H., et al., 2018.Fluid Inclusions Constraints on the Origin of the Xiaorequanzi Deposit in Eastern Tianshan. Earth Science, 43(9):3036-3048(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809009
|
Zhou, H., Xi, A.H., Xiong, Y.X., et al., 2013.Progress in the Research on Fluid Inclusions. Acta Mineralogica Sinica, 33(1):92-100(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201301014
|
付乐兵, 魏俊浩, 张道涵, 等, 2015.单个流体包裹体成分LA-ICP-MS分析与矿床学应用进展.中南大学学报(自然科学版), 46(10):3832-3840. doi: 10.11817/j.issn.1672-7207.2015.10.037
|
胡圣虹, 胡兆初, 刘勇胜, 等, 2001.单个流体包裹体元素化学组成分析新技术——激光剥蚀电感耦合等离子体质谱(LA-ICP-MS).地学前缘, (4):434-440. doi: 10.3321/j.issn:1005-2321.2001.04.026
|
蓝廷广, 胡瑞忠, 范宏瑞, 等, 2017.流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用.岩石学报, 33(10):3239-3262. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710017
|
李晓春, 范宏瑞, 胡芳芳, 等, 2010.单个流体包裹体LA-ICP-MS成分分析及在矿床学中的应用.矿床地质, 29(6):1017-1028. doi: 10.3969/j.issn.0258-7106.2010.06.006
|
卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社.
|
马莉, 李以科, 王安建, 等, 2014. LA-ICP-MS与SRXRF测试流体包裹体的应用研究.矿床地质, 33(S1):547-548. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8451027
|
倪培, 范宏瑞, 丁俊英, 2014.流体包裹体研究进展.矿物岩石地球化学通报, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001
|
孙贺, 肖益林, 2009.流体包裹体研究:进展、地质应用及展望.地球科学进展, 24(10):1105-1121. doi: 10.3321/j.issn:1001-8166.2009.10.005
|
孙万龙, 彭素霞, 白建科, 等, 2018.新疆乌伦布拉克铜矿流体包裹体特征及含矿岩体年代学.地球科学, 43(12):4475-4489. doi: 10.3799/dqkx.2018.166
|
孙小虹, 胡明月, 刘成林, 等, 2013.激光剥蚀ICP-MS法测定盐类矿物单个流体包裹体的成分.分析化学, 41(2):235-241. http://d.old.wanfangdata.com.cn/Periodical/fxhx201302013
|
王莉娟, 王玉往, 王京彬, 等, 2006.内蒙古大井锡多金属矿床流体成矿作用研究:单个流体包裹体组分LA-ICP-MS分析证据.科学通报, (10):1203-1210. doi: 10.3321/j.issn:0023-074X.2006.10.012
|
魏娜, 黄凡, 王岩, 等, 2018.南岭东段园岭寨斑岩型钼矿成因——流体包裹体和稳定同位素证据.地球科学, 43(S2):135-148. doi: 10.3799/dqkx.2018.194
|
袁洪林, 高山, 戴梦宁, 等, 2009.流体包裹体中Sr同位素的激光剥蚀多接收等离子体质谱原位微区分析.矿物岩石地球化学通报, 28(4):313-317. doi: 10.3969/j.issn.1007-2802.2009.04.001
|
张文东, 吴湘滨, 邓小华, 等, 2018.东天山小热泉子矿床流体包裹体及矿床成因.地球科学, 43(9):3036-3048. doi: 10.3799/dqkx.2018.150
|
周慧, 郗爱华, 熊益学, 等, 2013.流体包裹体的研究进展.矿物学报, 33(1):92-100. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200001015
|