• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 11
    Nov.  2019
    Turn off MathJax
    Article Contents
    Sun Chuanxiang, Nie Haikuan, Liu Guangxiang, Zhang Guangrong, Du Wei, Wang Ruyue, 2019. Quartz Type and Its Control on Shale Gas Enrichment and Production: A Case Study of the Wufeng-Longmaxi Formations in the Sichuan Basin and Its Surrounding Areas, China. Earth Science, 44(11): 3692-3704. doi: 10.3799/dqkx.2019.203
    Citation: Sun Chuanxiang, Nie Haikuan, Liu Guangxiang, Zhang Guangrong, Du Wei, Wang Ruyue, 2019. Quartz Type and Its Control on Shale Gas Enrichment and Production: A Case Study of the Wufeng-Longmaxi Formations in the Sichuan Basin and Its Surrounding Areas, China. Earth Science, 44(11): 3692-3704. doi: 10.3799/dqkx.2019.203

    Quartz Type and Its Control on Shale Gas Enrichment and Production: A Case Study of the Wufeng-Longmaxi Formations in the Sichuan Basin and Its Surrounding Areas, China

    doi: 10.3799/dqkx.2019.203
    • Received Date: 2019-02-03
    • Publish Date: 2019-11-15
    • Mineral compositions control the type and key physical properties of shale gas reservoir. To analyze the characteristics of different types of quartz minerals in the longitudinal direction and their effects on shale gas enrichment and development, two graptolite shale zones are scrutinized including WF2-LM4 and LM5-LM8 of the Wufeng-Longmaxi Formations in the Sichuan basin and its surrounding areas. Three types of quartz are identified which are detrital quartz, biogenic quartz and quartz sourced from clay mineral reactions by means of thin section examination, scanning electron microscopy(SEM), mineral diagenesis and energy spectrum analysis. The contents of the three types of quartz vary in different shale intervals. Biogenic quartz is most abundant in the WF2-LM4 graptolite shale zone and gradually decreases upward to the LM5-LM8. In the WF2-LM4 graptolite shale zone, there is a clear positive correlation between biogenic quartz and organic carbon content, which is conducive not only to the formation of favorable shale reservoirs but also to the fracturing of shale reservoirs, realizing the integrity of shale gas enrichment and formation stimulation. The development areas of black shale from the Wufeng Formation and the first section of the Longmaxi Formation (WF2-LM4 graptolite shale zone) are identified as favorable targets providing abundant material basis for shale gas enrichment.

       

    • loading
    • Alkhafaji, M. W., Aljubouri, Z. A., Aldobouni, I. A., 2015. Depositional Environment of the Lower Silurian Akkas Hot Shales in the Western Desert of Iraq: Results from an Organic Geochemical Study. Marine and Petroleum Geology, 64: 294-303. https://doi.org/10.1016/j.marpetgeo.2015.02.012
      Aplin, A. C., Macquaker, J. H. S., 2011. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12): 2031-2059. https://doi.org/10.1306/03281110162
      Arthur, M.A., Dean, W.E., 1991. A Holistic Geochemical Approach to Cyclomania Examples from Cretaceous Pelagic Limestone Sequences. In: Einsele, G., Ricken, W., Seilacher, A., eds., Cycles and Events in Stratigraphy. Springer Verlag, Berlin, 126-166.
      Chen, X., Chen, Q., Zhen, Y. Y., et al., 2018. The Circlical Distribution Pattern of the Black Graptolite Shales of the Longmaxi Formation at the Beginning of Silurian. Science in China (Series D: Earth Sciences), 48(9):1198-1026 (in Chinese).
      Chen, X., Fan, J. X., Zhang, Y. D., et al., 2015. Subdivision and Delineation of the Wufeng and Longmaxi Black Shales in the Subsurface Areas of the Yangtze Platform. Journal of Stratigraphy, 39(4):351-358 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201504001.htm
      Dennett, M. R., 2002. Video Plankton Recorder Reveals High Abundances of Colonial Radiolaria in Surface Waters of the Central North Pacific. Journal of Plankton Research, 24(8): 797-805. https://doi.org/10.1093/plankt/24.8.797
      Guo, X.S., 2017. Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area. Earth Science, 42(7): 1069-1082 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.086
      He, Z. L., Hu, Z. Q., Nie, H. K., et al., 2017. Characterization of Shale Gas Enrichment in the Wufeng Formation-Longmaxi Formation in the Sichuan Basin of China and Evaluation of Its Geological Construction-Transformation Evolution Sequence. Journal of Natural Gas Geoscience, 28(5):724-733 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201705007
      Huggett, J., Hooker, J. N., Cartwright, J., 2017. Very Early Diagenesis in a Calcareous, Organic-Rich Mudrock from Jordan. Arabian Journal of Geosciences, 10(12): 270. https://doi.org/10.1007/s12517-017-3038-5
      Ishii, E., Sanada, H., Iwatsuki, T., et al., 2011. Mechanical Strength of the Transition Zone at the Boundary between Opal-A and Opal-CT Zones in Siliceous Rocks. Engineering Geology, 122(3/4): 215-221. https://doi.org/10.1016/j.enggeo.2011.05.007
      Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016.Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng- Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1):1-10 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001
      Jin, Z. J., Li, M. W., Hu, Z. Q., et al., 2015. Shorten the Learning Curve through Technological Innovation: A Case Study of the Fuling Shale Gas Discovery in Sichuan Basin, SW China. Unconventional Resources Technology Conference, Texas.
      Jin, Z. J., Nie, H. K., Liu, Q. Y., et al., 2018. Source and Seal Coupling Mechanism for Shale Gas Enrichment in Upper Ordovician Wufeng Formation - Lower Silurian Longmaxi Formation in Sichuan Basin and Its Periphery. Marine and Petroleum Geology, 97: 78-93. https://doi.org/10.1016/j.marpetgeo.2018.06.009
      Liang, D.G., Guo, T.L., Bian, L.Z., et al., 2009. Some Progress on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3): Controlling Factors on the Sedimentary Facies and Develoment of Palaozoic Marine Source Rocks. Marine Origin Petroleum Geology, 14(2):1-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HXYQ200902003.htm
      Lin, J.F., Hu, H.Y., Li, Q., et al., 2017. Geochemical Characteristics and Implications of Shale Gas in Jiaoshiba, Easter Sichuan, China. Earth Science, 42(7): 1124-1133 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.091
      Liu, H. L., Guo, W., Liu, D. X., et al., 2018. Authigenic Embrittlement of Marine Shale in the Process of Diagenesis. Natural Gas Industry, 38(5): 17-25 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201805003
      Liu, J.T., Li, Y.J., Zhang, Y.C., et al., 2017. Evidencs of Biogenic Silica of Wufeng-Longmaxi Formation Shale in Jiaoshiba Area and Its Geological Significance. Journal of China University of Petroleum, 41(1): 34-41 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201701004.htm
      Liu, S. G., Ma, W. X., Luba, J., et al., 2011. Characteristics of the Shale Gas Reservoir Rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China. Acta Petrologica Sinica, 27(8): 2239-2252 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108003
      Loucks, R. G., Reed, R. M., 2014. Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic Matter Pores Associated with Depostional Organic Matter versus Migrated Organic Matter in Mudrocks. Gulf Coast Association of Gelogical Societies Journal, 3:51-60.
      Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. https://doi.org/10.1306/11020606059
      Lüning, S., Craig, J., Loydell, D. K., et al., 2000. Lower Silurian Hot Shales' in North Africa and Arabia: Regional Distribution and Depositional Model. Earth-Science Reviews, 49(1/2/3/4): 121-200. https://doi.org/10.1016/s0012-8252(99)00060-4
      Ma, X. H., Xie, J., 2018. The Progress and Prospects of Shale Gas Exploration and Development in Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 45(1):161-169 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380418300181
      Macquaker, J. H. S., Taylor, K. G., Keller, M., et al., 2014. Compositional Controls on Early Diagenetic Pathways in Fine-Grained Sedimentary Rocks: Implications for Predicting Unconventional Reservoir Attributes of Mudstones. AAPG Bulletin, 98(3): 587-603. https://doi.org/10.1306/08201311176
      Matheney, R. K., Knauth, L. P., 1993. New Isotopic Temperature Estimates for Early Silica Diagenesis in Bedded Cherts. Geology, 21(6): 519-522. https://doi.org/10.1130/0091-7613(1993)021 < 0519:nitefe > 2.3.co; 2 doi: 10.1130/0091-7613(1993)021<0519:nitefe>2.3.co;2
      Metwally, Y. M., Chesnokov, E. M., 2012. Clay Mineral Transformation as a Major Source for Authigenic Quartz in Thermo-Mature Gas Shale. Applied Clay Science, 55(1): 138-150. https://doi.org/10.1016/j.clay.2011.11.007
      Milliken, K. L., Ergene, S. M., Ozkan, A., 2016. Quartz Types, Authigenic and Detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sedimentary Geology, 339: 273-288. https://doi.org/10.1016/j.sedgeo.2016.03.012
      Milliken, K. L., Esch, W. L., Reed, R. M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8): 1553-1578. https://doi.org/10.1306/12011111129
      Nie, H. K., Bao, S. J., Gao, B., et al., 2012. A Study of Shale Gas Preservation Conditions for the Lower Paleozoic in Sichuan Basin and Its Periphery. Earth Science Frontiers, 19(3):280-294 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201203030
      Nie, H. K., Jin, Z. J., Bian, R. K., et al., 2016. The "Source-Cap Hydrocarbon-Controlling" Enrichment of Shale Gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and Its Periphery. Acta Petrologica Sinica, 37(5): 557-571 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201605001
      Nie, H. K., Jin, Z. J., Ma, X., et al., 2017. Graptolites Zone and Sedimentary Characteristics of Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and Its Adjacent Areas. Acta Petrologica Sinica, 38(2): 160-174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201702004
      Qin, J. Z., Shen, B.J., Fu, X. D., et al., 2010. Ultramicroscopic Organic Petrology and Potential of Hydrocarbon Generation and Expulsion of Quality Marine Source Rocks in South China. Oil & Gas Geology, 31(6):826-837 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201006016
      Rong, J. Y., Chen, X., Wang, Y., et al., 2011. Northward Expansion of Central Guizhou Oldland through the Ordovician and Silurian Transition: Evidence and Implications. Science in China (Series D:Earth Sciences), 41(10):1407-1415 (in Chinese).
      Rowe, H. D., Loucks, R. G., Ruppel, S. C., et al., 2008. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk Geochemical Inferences and Mo-TOC Constraints on the Severity of Hydrographic Restriction. Chemical Geology, 257(1/2): 16-25. https://doi.org/10.1016/j.chemgeo.2008.08.006
      Schieber, J., Krinsley, D., Riciputi, L., 2000. Diagenetic Origin of Quartz Silt in Mudstones and Implications for Silica Cycling. Nature, 406(6799): 981-985. https://doi.org/10.1038/35023143
      Thyberg, B., Jahren, J., Winje, T., et al., 2010. Quartz Cementation in Late Cretaceous Mudstones, Northern North Sea: Changes in Rock Properties Due to Dissolution of Smectite and Precipitation of Micro-Quartz Crystals. Marine and Petroleum Geology, 27(8): 1752-1764. https://doi.org/10.1016/j.marpetgeo.2009.07.005
      van den Boorn, S. H. J. M., van Bergen, M. J., Nijman, W., et al., 2007. Dual Role of Seawater and Hydrothermal Fluids in Early Archean Chert Formation: Evidence from Silicon Isotopes. Geology, 35(10): 939-942. https://doi.org/10.1130/g24096a.1
      Wang, X.P., Mou, C.L., Ge, X.Y., et al., 2015a. Mineral Component and Evaluation of Black Rock Series of Longmaxi Formation in Southern Sichuan and Its Periphery. Acta Petrolei Sinica, 36(2):150-162 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201502003
      Wang, X.P., Mou, C.L., Wang, Q.Y., et al., 2015b. Diagenesis of Black Shale in Longmaxi Formation, Southern Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 36(9):1035-1047 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201509002
      Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013. Structure and Problems of South China Continent. Science in China (Series D: Earth Sciences), 43(10): 1553-1582 (in Chinese).
      Zhao, J. H., Jin, Z. K., Jin, Z. J., et al., 2017. Origin of Authigenic Quartz in Organic-Rich Shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Pore Evolution. Journal of Natural Gas Science and Engineering, 38:21-38. doi: 10.1016/j.jngse.2016.11.037
      Zhao, J.H., Jin, Z.J., Jin, Z.K., et al., 2016. The Genesis of Quartz in Wufeng-Longmaxi Gas Shales, Sichuan Basin. Natural Gas Geoscience, 27(2): 377-386 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201602020
      陈旭, 陈清, 甄勇毅, 等, 2018.志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式.中国科学(D辑:地球科学), 48(9):1198-1026. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201809006.htm
      陈旭, 樊隽轩, 张元动, 等, 2015.五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定.地层学杂志, 39(4): 351-358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201504001
      郭旭升, 2017.上扬子地区五峰组-龙马溪组页岩层序地层及演化模式.地球科学, 42(7): 1069-1082. doi: 10.3799/dqkx.2017.086
      何治亮, 胡宗全, 聂海宽, 等, 2017.四川盆地五峰组-龙马溪组页岩气富集特征与"建造-改造"评价思路.天然气地球科学, 28(5):724-733. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201705007.htm
      金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001
      梁狄刚, 郭彤楼, 边立曾, 等, 2009.中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素.海相油气地质, 14(2): 1-19. doi: 10.3969/j.issn.1672-9854.2009.02.001
      林俊峰, 胡海燕, 黎祺, 等, 2017.川东焦石坝地区页岩气特征及其意义.地球科学, 42(7): 1124-1133. doi: 10.3799/dqkx.2017.091
      刘洪林, 郭伟, 刘德勋, 等, 2018.海相页岩成岩过程中的自生催化作用.天然气工业, 38(5): 17-25. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201805003.htm
      刘江涛, 李永杰, 张元春, 等, 2017.焦石坝五峰组-龙马溪组页岩硅质生物成因的证据及其地质意义.中国石油大学学报(自然科学版), 41(1): 34-41. doi: 10.3969/j.issn.1673-5005.2017.01.004
      刘树根, 马文辛, Luba, J., 等, 2011.四川盆地东部地区下志留统龙马溪组页岩储层特征.岩石学报, 27(8): 2239-2252. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108003
      马新华, 谢军, 2018.川南地区页岩气勘探开发进展及发展前景: 石油勘探与开发, 45(1): 161-169. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201801020.htm
      聂海宽, 包书景, 高波, 等, 2012.四川盆地及其周缘下古生界页岩气保存条件研究.地学前缘, 19(3): 280-294. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203030
      聂海宽, 金之钧, 边瑞康, 等, 2016.四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气"源-盖控藏"富集.石油学报, 37(5): 557-571. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201605001.htm
      聂海宽, 金之钧, 马鑫, 等, 2017.四川盆地及邻区上奥陶统五峰组-下志留统龙马溪组底部笔石带及沉积特征.石油学报, 38(2): 160-174. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702004.htm
      秦建中, 申宝剑, 付小东, 等, 2010.中国南方海相优质烃源岩超显微有机岩石学与生排烃潜力.石油与天然气地质, 31(6): 826-837. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201006016
      戎嘉余, 陈旭, 王怿, 等, 2011.奥陶-志留纪之交黔中古陆的变迁:证据与启示.中国科学(D辑:地球科学), 41(10):1407-1415. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201110003.htm
      王秀平, 牟传龙, 葛详英, 等, 2015a.川南及邻区龙马溪组黑色岩系矿物组分特征及评价.石油学报, 36(2):150-162. http://d.old.wanfangdata.com.cn/Periodical/syxb201502003
      王秀平, 牟传龙, 王启宇, 等, 2015b.川南及邻区龙马溪组黑色岩系成岩作用.石油学报, 36(9):1035-1047. http://d.old.wanfangdata.com.cn/Periodical/syxb201509002
      张国伟, 郭安林, 王岳军, 等, 2013.中国华南大陆构造与问题.中国科学(D辑:地球科学), 43(10): 1553-1582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201310003
      赵建华, 金之钧, 金振奎, 等, 2016.四川盆地五峰组-龙马溪组含气页岩中石英成因研究.天然气地球科学, 27(2): 377-386. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201602022.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (4985) PDF downloads(85) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return