• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 11
    Nov.  2019
    Turn off MathJax
    Article Contents
    Xu Jie, Tao Huifei, Chen Ke, Zhang Zhongning, Wang Xiaofeng, Li Jing, Hao Lewei, 2019. Evolutionary Characteristics of Pore Structure for Over-Matured Shales in Semi-Closed Thermal Simulation Experiment. Earth Science, 44(11): 3736-3748. doi: 10.3799/dqkx.2019.218
    Citation: Xu Jie, Tao Huifei, Chen Ke, Zhang Zhongning, Wang Xiaofeng, Li Jing, Hao Lewei, 2019. Evolutionary Characteristics of Pore Structure for Over-Matured Shales in Semi-Closed Thermal Simulation Experiment. Earth Science, 44(11): 3736-3748. doi: 10.3799/dqkx.2019.218

    Evolutionary Characteristics of Pore Structure for Over-Matured Shales in Semi-Closed Thermal Simulation Experiment

    doi: 10.3799/dqkx.2019.218
    • Received Date: 2019-08-31
    • Publish Date: 2019-11-15
    • In order to study the evolution law of pore structure of over-matured shale, two groups of over-matured shales, which were collected from Cambrian Niutitang Formation and Silurian Longmaxi Formation in the Upper Yangtze region, were selected to carry out semi-closed thermal simulation experiments. Meanwhile, X-ray diffraction analysis, CO2 and N2 isotherm adsorption as well as FE-SEM observations were used to determine mineralogical compositions and study the nanopore evolution characteristics. The pore volume of Longmaxi samples increases to the maximum at 500℃, and the pore volume is 1.35 times higher than that of the original sample. The pore volume of shale samples in Niutitang Formation rises to the maximum at 450℃, which is 1.13 times higher than the original sample. Combined with N2 and CO2 adsorption data, the micro-meso-macro pore volume of the samples in the two groups was calculated. The micropore volume of the samples in the Niutitang Formation is 1.72 times higher than that in the Longmaxi Formation, and the mesopore volume of the samples in the Longmaxi Formation is 1.44 times higher than that in the Niutitang Formation. These results show that follows (1) The shale of Niutitang Formation has weak hydrocarbon generation potential and high original micropore volume, with little hydrocarbon generation and difficulty in discharging, resulting in relatively poor pore structure improvement.(2) Longmaxi Formation has high quartz content and strong compressive resistance, which is conducive to the development and preservation of meso-macropores, as well as hydrocarbon generation and subsequent extraction, so the pore volume is greatly improved.

       

    • loading
    • Behar, F., Vandenbroucke, M., Tang, Y., et al., 1997. Thermal Cracking of Kerogen in Open and Closed Systems: Determination of Kinetic Parameters and Stoichiometric Coefficients for Oil and Gas Generation. Organic Geochemistry, 26(5/6): 321-339. https://doi.org/10.1016/s0146-6380(97)00014-4
      Bernard, S., Horsfield, B., Schulz, H. M., et al., 2010. Multi-Scale Detection of Organic and Inorganic Signatures Provides Insights into Gas Shale Properties and Evolution. Geochemistry, 70: 119-133. https://doi.org/10.1016/j.chemer.2010.05.005
      Bernard, S., Wirth, R., Schreiber, A., et al., 2012. Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103: 3-11. https://doi.org/10.1016/j.coal.2012.04.010
      Chalmers, G. R. L., Bustin, R. M., 2008. Lower Cretaceous Gas Shales in Northeastern British Columbia, Part Ⅰ: Geological Controls on Methane Sorption Capacity. Bulletin of Canadian Petroleum Geology, 56(1): 1-21. https://doi.org/10.2113/gscpgbull.56.1.1
      Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation.Fuel, 129: 173-181. https://doi.org/10.1016/j.fuel.2014.03.058
      Chen, L., Jiang, Z. X., Liu, K. Y., et al., 2017. Pore Structure Characterization for Organic-Rich Lower Silurian Shale in the Upper Yangtze Platform, South China: A Possible Mechanism for Pore Development. Journal of Natural Gas Science and Engineering, 46: 1-15. https://doi.org/10.1016/j.jngse.2017.07.009
      Chen, S. B., Zuo, Z. X., Moore, T. A., et al., 2018. Nanoscale Pore Changes in a Marine Shale: A Case Study Using Pyrolysis Experiments and Nitrogen Adsorption.Energy & Fuels, 32(9): 9020-9032. https://doi.org/10.1021/acs.energyfuels.8b01405
      Chen, Y.Y., Zou, C.N., Maria, M., et al., 2015.Porosity and Fractal Characteristics of Shale across a Maturation Gradient. Natural Gas Geoscience, 26(9): 1646-1656 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201509004
      Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86:1921-1938. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704025
      Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004
      Dai, F.Y., Hao, F., Hu, H.Y., et al., 2017.Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin. Earth Science, 42(7):1185-1194 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.096
      David, A.W., Bodhisatwa, H., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 1: Bulk Properties, Multi-Scale Geometry and Gas Adsorption. Journal of Earth Science, 28(5): 739-757. doi: 10.1007/s12583-017-0732-x
      Dong, D.Z., Cheng, K.M., Wang, Y.M., et al., 2010. Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region, China.Oil & Gas Geology, 31(3): 288-299, 308 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201003004
      Huang, L., Shen, W., 2015. Characteristics and Controlling Factors of the Formation of Pores of a Shale Gas Reservoir: A Case Study from Longmaxi Formation of the Upper Yangtze Region, China. Earth Science Frontiers, 22(1): 374-385 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=cfe89fa9d2deb0fa98bca7b01381e8be&encoded=0&v=paper_preview&mkt=zh-cn
      Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068
      Li, J. J., Ma, Y., Huang, K. Z., et al., 2018. Quantitative Characterization of Organic Acid Generation, Decarboxylation, and Dissolution in a Shale Reservoir and the Corresponding Applications: A Case Study of the Bohai Bay Basin. Fuel, 214: 538-545. https://doi.org/10.1016/j.fuel.2017.11.034
      Liang, C., Jiang, Z., Cao, Y., et al., 2017. Sedimentary Characteristics and Paleoenvironment of Shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and Its Shale Gas Potential. Journal of Earth Science, 28(6): 1020-1031. doi: 10.1007/s12583-016-0932-x
      Liang, D.G., Guo, T.L., Chen, J.P., et al., 2009. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 2): Geochemical Characteristics of Four Suits of Regional Marine Source Rocks, South China. Marine Origin Petroleum Geology, 14(1): 1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ200901004.htm
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
      Nie, H. K., Sun, C. X., Liu, G. X., et al., 2019. Dissolution Pore Types of the Wufeng Formation and the Longmaxi Formation in the Sichuan Basin, South China: Implications for Shale Gas Enrichment. Marine and Petroleum Geology, 101: 243-251. https://doi.org/10.1016/j.marpetgeo.2018.11.042
      Pan, T., Zhu, L., Wang, Y.D., et al., 2016.Organic Matter Characteristics in Longmaxi Formation Shale and Their Impacts on Shale Gas Enrichment in Southern Sichuan. Geological Journal of China Universities, 22(2):344-349 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201602014
      Qiu, Q., 2017.Characteristics of Organic Matter Shale Deposit and Reservoir in the Niutitang Formation, Southeast Chongqing (Dissertation).Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Qiu, Z., Zou, C. N., Li, X. Z., et al., 2018. Discussion on the Contribution of Graptolite to Organic Enrichment and Gas Shale Reservoir: A Case Study of the Wufeng-Longmaxi Formations in South China. Natural Gas Geoscience, 29(5): 606-615 (in Chinese with English abstract).
      Sing, K. S. W., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603-619. https://doi.org/10.1351/pac198557040603
      Sun, L. N., Tuo, J. C., Zhang, M. F., et al., 2015. Formation and Development of the Pore Structure in Chang 7 Member Oil-Shale from Ordos Basin during Organic Matter Evolution Induced by Hydrous Pyrolysis. Fuel, 158: 549-557. https://doi.org/10.1016/j.fuel.2015.05.061
      Sun, M. D., Yu, B. S., Hu, Q. H., et al., 2018. Pore Structure Characterization of Organic-Rich Niutitang Shale from China: Small Angle Neutron Scattering (SANS) Study. International Journal of Coal Geology, 186: 115-125. https://doi.org/10.1016/j.coal.2017.12.006
      Tuo, J. C., Wu, C. J., Zhang, M. F., 2016. Organic Matter Properties and Shale Gas Potential of Paleozoic Shales in Sichuan Basin, China.Journal of Natural Gas Science and Engineering, 28: 434-446. https://doi.org/10.1016/j.jngse.2015.12.003
      Wang, F.Y., Guan, J., Feng, W.P., et al., 2013. Evolution of Overmature Marine Shale Porosity and Implication to the Free Gas Volume. Petroleum Exploration and Development, 40(6): 764-768 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201306019
      Wang, P.F., Jiang, Z.X., Han, B., et al., 2018. Reservoir Geological Parameters for Efficient Exploration and Development of Lower Cambrian Niutitang Formation Shale Gas in South China. Acta Petrolei Sinica, 39(2): 152-162 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201802003
      Wang, S.F., Zhang, Z.Y., Dong, D.Z., et al., 2016. Microscopic Pore Structure and Reasons Making Reservoir Property Weaker of Lower Cambrian Qiongzhusi Shale, Sichuan Basin, China. Natural Gas Geoscience, 27(9): 1619-1628 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201609007
      Wu, Y. D., Ji, L. M., He, C., et al., 2016. The Effects of Pressure and Hydrocarbon Expulsion on Hydrocarbon Generation during Hydrous Pyrolysis of Type-Ⅰ Kerogen in Source Rock. Journal of Natural Gas Science and Engineering, 34: 1215-1224. https://doi.org/10.1016/j.jngse.2016.08.017
      Xia, W., Yu, B.S., Wang, Y.H., et al., 2017. Study on the Depositional Environment and Organic Accumulation Mechanism in the Niutitang and Longmaxi Formation, North Guizhou Province: A Case Study of Well Renye 1 and Well Xiye 1. Journal of Mineralogy and Petrology, 37(3): 77-89 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201703011
      Xu, Z., Shi, W.Z., Zhai, G.Y., et al., 2017. Relationship Differences and Causes between Porosity and Organic Carbon in Black Shales of the Lower Cambrian and the Lower Silurian in Yangtze Area. Earth Science, 42(7): 1223-1234 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.099
      Xu, Z.Y., Jiang, S., Xiong, S.Y., et al., 2015. Characteristics and Depositional Model of the Lower Paleozoic Organic Rich Shale in the Yangtze Continental Block. Acta Sedimentologica Sinica, 33(1): 21-35 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201501003
      Yang, B.G., Pan, R.F., Liu, L., et al., 2015.The Influence of Geological Condition of Sichuan Basin Changning Demonstration Area on the Development of Organic Matters in Shale.Science Technology and Engineering, 15(26):35-41, 65 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201526005
      Yu, B.S., 2013.Classification and Characterization of Gas Shale Pore System. Earth Science Frontiers, 20(4):211-220 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201304017
      Zhang, T.S., Yang, Y., Gong, Q.S., et al., 2014. Characteristics and Mechanisms of the Micro-Pores in the Early Palaeozoic Marine Shale, Southern Sichuan Basin.Acta Geologica Sinica, 88(9): 1728-1740 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201409009
      Zhao, W.Z., Li, J.Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4): 499-510 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201604001
      Zheng, M., Li, J.Z., Wu, X.Z., et al., 2018. China's Conventional and Unconventional Natural Gas Resource Potential, Key Exploration Fields and Direction.Natural Gas Geoscience, 29(10):1383-1397 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201810001
      Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3
      陈燕燕, 邹才能, Mastalerz, M., 等, 2015.页岩微观孔隙演化及分形特征研究.天然气地球科学, 26(9):1646-1656. http://d.old.wanfangdata.com.cn/Conference/9128721
      戴方尧, 郝芳, 胡海燕, 等, 2017.川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素.地球科学, 42(7):1185-1194. doi: 10.3799/dqkx.2017.096
      董大忠, 程克明, 王玉满, 等, 2010.中国上扬子区下古生界页岩气形成条件及特征.石油与天然气地质, 31(3): 288-299, 308. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201003004
      黄磊, 申维, 2015.页岩气储层孔隙发育特征及主控因素分析:以上扬子地区龙马溪组为例.地学前缘, 22(1):374-385. http://d.old.wanfangdata.com.cn/Periodical/dxqy201501032
      梁狄刚, 郭彤楼, 陈建平, 等, 2009.中国南方海相生烃成藏研究的若干新进展(二):南方四套区域性海相烃源岩的地球化学特征.海相油气地质, 14(1):1-15. doi: 10.3969/j.issn.1672-9854.2009.01.001
      潘涛, 朱雷, 王亚东, 等, 2016.川南地区龙马溪组有机质特征及其对页岩气富集规律的影响研究.高校地质学报, 22(2):344-349. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201602014
      邱琼, 2017.渝东南牛蹄塘组富有机质页岩沉积与储层特征(硕士学位论文).成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1017216681.htm
      邱振, 邹才能, 李熙喆, 等, 2018.论笔石对页岩气源储的贡献——以华南地区五峰组-龙马溪组笔石页岩为例.天然气地球科学, 29(5):606-615. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201805002.htm
      王飞宇, 关晶, 冯伟平, 等, 2013.过成熟海相页岩孔隙度演化特征和游离气量.石油勘探与开发, 40(6):764-768. http://d.old.wanfangdata.com.cn/Periodical/syktykf201306019
      王朋飞, 姜振学, 韩波, 等, 2018.中国南方下寒武统牛蹄塘组页岩气高效勘探开发储层地质参数.石油学报, 39(2):152-162. http://d.old.wanfangdata.com.cn/Periodical/syxb201802003
      王淑芳, 张子亚, 董大忠, 等, 2016.四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨.天然气地球科学, 27(9):1619-1628. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201609007
      夏威, 于炳松, 王运海, 等, 2017.黔北牛蹄塘组和龙马溪组沉积环境及有机质富集机理———以RY1井和XY1井为例.矿物岩石, 37(3):77-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys201703011
      徐壮, 石万忠, 翟刚毅, 等, 2017.扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因.地球科学, 42(7):1223-1234. doi: 10.3799/dqkx.2017.099
      徐政语, 蒋恕, 熊绍云, 等, 2015.扬子陆块下古生界页岩发育特征与沉积模式.沉积学报, 33(1):21-35. http://d.old.wanfangdata.com.cn/Periodical/cjxb201501003
      杨宝刚, 潘仁芳, 刘龙, 等, 2015.四川盆地长宁示范区地质条件对页岩有机质的影响.科学技术与工程, 15(26): 35-41, 65. doi: 10.3969/j.issn.1671-1815.2015.26.005
      于炳松, 2013.页岩气储层孔隙分类与表征.地学前缘, 20(4):211-220. http://d.old.wanfangdata.com.cn/Periodical/qgsj201715138
      张廷山, 杨洋, 龚其森, 等, 2014.四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素.地质学报, 88(9):1728-1740. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201409009
      赵文智, 李建忠, 杨涛, 等, 2016.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 43(4):499-510. doi: 10.11698/PED.2016.04.01
      郑民, 李建忠, 吴晓智, 等, 2018.我国常规与非常规天然气资源潜力、重点领域与勘探方向.天然气地球科学, 29(10):1383-1397. doi: 10.11764/j.issn.1672-1926.2018.09.006
      邹才能, 董大忠, 王社教, 等, 2010.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 37(6):641-653. http://d.old.wanfangdata.com.cn/Periodical/syktykf201006001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(4)

      Article views (3222) PDF downloads(54) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return