Citation: | Zhang Lianchang, Peng Zidong, Zhai Mingguo, Tong Xiaoxue, Zhu Mingtian, Wang Changle, 2020. Tectonic Setting and Genetic Relationship between BIF and VMS-in the Qingyuan Neoarchean Greenstone Belt, Northern North China Craton. Earth Science, 45(1): 1-16. doi: 10.3799/dqkx.2019.224 |
Barley, M., Bekker, A., Krapez, B., 2005. Late Archean to Early Paleoproterozoic Global Tectonics, Environmental Change and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 238(1-2): 156-171. https://doi.org/10.1016/j.epsl.2005.06.062
|
Bekker, A., Slack, J. F., Planavsky, N., et al., 2010. Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes. Economic Geology, 105(3): 467-508. https://doi.org/10.2113/gsecongeo.105.3.467
|
Dreher, A. M., Xavier, R. P., Taylor, B. E., et al., 2008. New Geologic, Fluid Inclusion and Stable Isotope Studies on the Controversial Igarapé Bahia Cu-Au Deposit, Carajás Province, Brazil. Mineralium Deposita, 43(2): 161-184. https://doi.org/10.1007/s00126-007-0150-6
|
Farquhar, J., Zerkle, A. L., Bekker, A., 2011. Geological Constraints on the Origin of Oxygenic Photosynthesis. Photosynthesis Research, 107(1): 11-36. https://doi.org/10.1007/s11120-010-9594-0
|
Franklin, J. M., Gibson, H. L., Jonasson, I. R., et al., 2005. Volcanogenic Massive Sulfide Deposits. Economic Geology 100th Anniversary Volume. SEG, Littleton, 523-560.
|
German, C. R., Von Damm, K. L., 2004, Hydrothermal Processes: Treatise on Geochemistry. Pergamon, Oxford, 181-222.
|
Gu, L. X., Zheng, Y. C., Tang, X. Q., et al., 2007. Copper, Gold and Silver Enrichment in Ore Mylonites within Massive Sulphide Orebodies at Hongtoushan VHMS Deposit, N.E. China. Ore Geology Reviews, 30(1): 1-29. https://doi.org/10.1016/j.oregeorev.2005.09.001
|
Hart, T. R., Gibson, H. L., Lesher, C. M., 2004. Trace Element Geochemistry and Petrogenesis of Felsic Volcanic Rocks Associated with Volcanogenic Massive Cu-Zn-Pb Sulfide Deposits. Economic Geology, 99(5): 1003-1013. https://doi.org/10.2113/gsecongeo.99.5.1003
|
Hou, K. J., Li, Y. H., Wan, D. F., 2006. Stable Isotope Geochemistry and Genesis of the Archean Hongtoushan Sulfide Deposit in Liaoning Province. Mineral Deposits, 25(Suppl.): 167-170 (in Chinese with English abstract).
|
Huston, D. L., Champion, D. C., Cassidy, K. F., 2014. Tectonic Controls on the Endowment of Neoarchean Cratons in Volcanic-Hosted Massive Sulfide Deposits: Evidence from Lead and Neodymium Isotopes. Economic Geology, 109(1): 11-26. https://doi.org/10.2113/econgeo.109.1.11
|
Huston, D. L., Logan, G. A., 2004. Barite, BIFs and Bugs: Evidence for the Evolution of the Earth's Early Hydrosphere. Earth and Planetary Science Letters, 220(1-2): 41-55. https://doi.org/10.1016/s0012-821x(04)00034-2
|
Huston, D. L., Pehrsson, S., Eglington, B. M., et al., 2010. The Geology and Metallogeny of Volcanic-Hosted Massive Sulfide Deposits: Variations through Geologic Time and with Tectonic Setting. Economic Geology, 105(3): 571-591. https://doi.org/10.2113/gsecongeo.105.3.571
|
Isley, A. E., 1995. Hydrothermal Plumes and the Delivery of Iron to Banded Iron Formation. The Journal of Geology, 103(2): 169-185. https://doi.org/10.1086/629734
|
Isley, A. E., Abbott, D. H., 1999. Plume-Related Mafic Volcanism and the Deposition of Banded Iron Formation. Journal of Geophysical Research: Solid Earth, 104(B7): 15461-15477. https://doi.org/10.1029/1999jb900066
|
Li, B. L., Huo, L., Li, Y. S., 2007. Several Problems Involved in the Study of Banded Iron Formations(BIFs). Acta Mineralogica Sinica, 27(2): 205-210 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200702016
|
Li, Y. H., Hou, K. J., Wan, D. F., et al., 2010. Formation Mechanism of Precambrian Banded Iron Formation and Atmosphere and Ocean during Early Stage of the Earth. Acta Geologica Sinica, 84(9): 1359-1373 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201009010
|
Li, Z., Wei, C. J., 2017. Two Types of Neoarchean Basalts from Qingyuan Greenstone Belt, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 292: 175-193. https://doi.org/10.1016/j.precamres.2017.01.014
|
Li, Z. H., Zhu, X. K., Tang, S. H., 2012. Mineralization Mechanism of Precambrian Banded Iron Formation and Atmosphere and Ocean Environment in Early Earth—Evidences from Iron Isotope and Element Geochemistry. Acta Petrologica Sinica, 28(11): 3545-3558 (in Chinese with English abstract).
|
Malinowski, M., White, D.J., Mwenifumbo, C. J., et al., 2008. Seismic Exploration for VMS Deposits within the Paleoproterozoic Flin Flon Belt, Trans-Hudson Orogen, Canada. Geophysical Research, 10: 37-45.
|
Mao, D. B., Shen, B. F., Li, J. J., et al., 1997. Archena Geologica and Metallogeny in Qingyuan Area, Northern Liaoning Province, China. Progress in Precambrian Research, 20(3):1-10 (in Chinese with English abstract).
|
Ohmoto, H., Watanabe, Y., Yamaguchi, K.E., et al., 2006. Chemical and Biological Evolution of Early Earth: Constraints from Banded Iron Formations. Geological Society of America Memoir, 198:291-331. https://doi.org/10.1130/2006.1198(17
|
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
|
Peng, P., Wang, C., Wang, X. P., et al., 2015. Qingyuan High-Grade Granite-Greenstone Terrain in the Eastern North China Craton: Root of a Neoarchaean Arc. Tectonophysics, 662: 7-21. https://doi.org/10.1016/j.tecto.2015.04.013
|
Peng, Z. D., 2018. Geodynamic Setting and Depositional Environment of the VMS-BIF Paragenetic Assemblage in the Neoarchean Qingyuan Greenstone Belt, North China Craton(Dissertation). Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
|
Peng, Z. D., Wang, C. L., Tong, X. X., et al., 2018. Element Geochemistry and Neodymium Isotope Systematics of the Neoarchean Banded Iron Formations in the Qingyuan Greenstone Belt, North China Craton. Ore Geology Reviews, 102: 562-584. https://doi.org/10.1016/j.oregeorev.2018.09.008
|
Peng, Z. D., Wang, C. L., Zhang, L. C., et al., 2017. Geochemistry of Metamorphosed Volcanic Rocks in the Neoarchean Qingyuan Greenstone Belt, North China Craton: Implications for Geodynamic Evolution and VMS Mineralization. Precambrian Research, 326: 196-221. https://doi.org/10.1016/j.precamres.2017.12.033
|
Peng, Z. D., Wang, C. L., Zhao, G., et al., 2017. Research Progress and Problems of Precambrian VMS-BIF Paragenetic Assemblage. Mineral Deposits, 36(4): 905-920 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704008
|
Peng, Z. D., Zhang, L. C., Wang, C. L., et al., 2018. Geological Features and Genesis of the Neoarchean Pyrite-Bearing Xiadianzi BIF, Qingyuan Greenstone Belt. Acta Petrologica Sinica, 34(2):398-426 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201802016
|
Piercey, S. J., 2010. An Overview of Petrochemistry in the Regional Exploration for Volcanogenic Massive Sulphide(VMS)Deposits. Geochemistry: Exploration, Environment, Analysis, 10(2): 119-136. https://doi.org/10.1144/1467-7873/09-221
|
Qi, S. J., Wang, C. Y., Yang, J. P., et al., 1983. The Origin of the Precambrian Metavolcanic-Sedimentary Rock Systems and the Massive Sulfide Deposits in Xingshutai Neiqiu, Hebei Province. Journal of Hebei College of Geology, 22(2): 1-16 (in Chinese).
|
Qian, Y., Sun, F. Y., Zhang, Y.J., et al., 2014. Metallogenic and Metamorphic Age of the Hongtoushan Copper-Zinc Massive Sulfide Deposit, Liaoning Province, China. Resource Geology, 64(1): 17-24. https://doi.org/10.1111/rge.12023
|
Rasmussen, B., Fletcher, I. R., Bekker, A., et al., 2012. Deposition of 1.88-Billion-Year-Old Iron Formations as a Consequence of Rapid Crustal Growth. Nature, 484(7395): 498-501. https://doi.org/10.1038/nature11021
|
Schardt, C., Large, R., Yang, J.W., 2006. Controls on Heat Flow, Fluid Migration, and Massive Sulfide Formation of an Off-Axis Hydrothermal System—The Lau Basin Perspective. American Journal of Science, 306(2): 103-134. https://doi.org/10.2475/ajs.306.2.103
|
Schneider, D. A., Bickford, M. E., Cannon, W. F., et al., 2002. Age of Volcanic Rocks and Syndepositional Iron Formations, Marquette Range Supergroup: Implications for the Tectonic Setting of Paleoproterozoic Iron Formations of the Lake Superior Region. Canadian Journal of Earth Sciences, 39(6): 999-1012. https://doi.org/10.1139/e02-016
|
Slack, J. F., Cannon, W. F., 2009. Extraterrestrial Demise of Banded Iron Formations 1.85 Billion Years ago. Geology, 37(11): 1011-1014. https://doi.org/10.1130/g30259a.1
|
Slack, J. F., Grenne, T., Bekker, A., 2009. Seafloor-Hydrothermal Si-Fe-Mn Exhalites in the Pecos Greenstone Belt, New Mexico, and the Redox State of ca. 1 720 Ma Deep Seawater. Geosphere, 5(3): 302-314. https://doi.org/10.1130/ges00220.1
|
Slack, J. F., Grenne, T., Bekker, A., et al., 2007. Suboxic Deep Seawater in the Late Paleoproterozoic: Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA. Earth and Planetary Science Letters, 255(1-2): 243-256. https://doi.org/10.1016/j.epsl.2006.12.018
|
Thurston, P. C., Ayer, J. A., Goutier, J., et al., 2008. Depositional Gaps in Abitibi Greenstone Belt Stratigraphy: A Key to Exploration for Syngenetic Mineralization. Economic Geology, 103(6): 1097-1134. https://doi.org/10.2113/gsecongeo.103.6.1097
|
Thurston, P. C., Kamber, B. S., Whitehouse, M., 2012. Archean Cherts in Banded Iron Formation: Insight into Neoarchean Ocean Chemistry and Depositional Processes. Precambrian Research, 214-215: 227-257. https://doi.org/10.1016/j.precamres.2012.04.004
|
Veizer, J., Laznicka, P., Jansen, S. L., 1989. Mineralization through Geologic Time; Recycling Perspective. American Journal of Science, 289(4): 484-524. https://doi.org/10.2475/ajs.289.4.484
|
Wan, Y. S., Song, B., Yang, C., et al., 2005. Zircon SHRIMP U-Pb Geochronology of Archaean Rocks from the Fushun-Qingyuan Area, Liaoning Province and Its Geological Significance. Acta Geologica Sinica, 79(1): 78-87 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200501009
|
Wang, C. L., Zhang, L. C., Liu, L., et al., 2012. Research Progress and Some Problems Deserving Further Discussion of Precambrian Iron Formations. Mineral Deposits, 31(6): 1311-1325 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201206015
|
Wu, K. K., Zhao, G. C., Sun, M., et al., 2013. Metamorphism of the Northern Liaoning Complex: Implications for the Tectonic Evolution of Neoarchean Basement of the Eastern Block, North China Craton. Geoscience Frontiers, 4(3): 305-320. https://doi.org/10.1016/j.gsf.2012.11.005
|
Wyman, D. A., Kerrich, R., Polat, A., 2002. Assembly of Archean Cratonic Mantle Lithosphere and Crust: Plume-Arc Interaction in the Abitibi-Wawa Subduction-Accretion Complex. Precambrian Research, 115(1-4): 37-62. https://doi.org/10.1016/s0301-9268(02)00005-0
|
Yang, X. Q., Zhang, Z. H., Duan, S. G., et al., 2016. Mineralogical and Sulfur Isotope Characteristics of Huashugou Copper Deposit in Northern Qilian: Implications for Metallogenesis. Mineral Deposit, 35(1): 185-195 (in Chinese with English abstract).
|
Yu, F. J., 2006. The Study of Metallogenic Model and Prospecting Pattern of Hongtoushan-Type Deposit(Dissertation). Northeastern University, Shenyang (in Chinese with English abstract).
|
Zhai, M. G., Yang, R. Y., Lu, W. J., et al., 1985. Geochemistry and Evolution of the Qingyuan Archaean Granite—Greenstone Terrain, NE China. Precambrian Research, 27(1-3): 37-62. https://doi.org/10.1016/0301-9268(85)90005-1
|
Zhang, L. C., Ji, J. S., Xue, C. J., et al., 1997. Geochemistry and Origin of Huashugou Fe-Cu Deposit in Gansu Province. Journal of Xi'an Geological College, 19(4):13-19 (in Chinese with English abstract).
|
Zhang, L. C., Zhai, M. G., Wan, Y. S., et al., 2012. Study of the Precambrian BIF-Iron Deposits in the North China Craton: Progresses and Questions. Acta Petrologica Sinica, 28(11): 3431-3445 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201211001
|
Zhang, L. C., Zhai, M. G., Zhang, X. J., et al., 2012. Formation Age and Tectonic Setting of the Shirengou Neoarchean Banded Iron Deposit in Eastern Hebei Province: Constraints from Geochemistry and SIMS Zircon U-Pb Dating. Precambrian Research, 222-223: 325-338. https://doi.org/10.1016/j.precamres.2011.09.007
|
Zhang, Q. S., Li, S. Y., Liu, L. D., 1984. Precambrian Geology and Mineralization, China. Jilin Peoples Publishing House, Changchun, 166-171 (in Chinese).
|
Zhang, Y. J., Sun, F. Y., Huo, L., et al., 2014. Metallogenic Age and Ore Remobilization of Shujigou Coper-Zinc Deposit, Liaoning Province, China. Journal of Jilin University(Earth Science Edition), 44(3): 786-795 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201403007
|
Zhu, M. T., Zhang, L. C., Dai, Y. P., et al., 2015. In Situ Zircon U-Pb Dating and O Isotopes of the Neoarchean Hongtoushan VMS Cu-Zn Deposit in the North China Craton: Implication for the Ore Genesis. Ore Geology Reviews, 67: 354-367. https://doi.org/10.1016/j.oregeorev.2014.12.019
|
侯可军, 李延河, 万德芳, 2006.辽宁太古代红透山铜矿的稳定同位素地球化学特征及矿床成因.矿床地质, 25(增刊): 167-170. http://d.old.wanfangdata.com.cn/Conference/6278275
|
李碧乐, 霍亮, 李永胜, 2007.条带状铁建造(BIFs)研究的几个问题.矿物学报, 27(2): 205-210. http://d.old.wanfangdata.com.cn/Periodical/kwxb200702016
|
李延河, 侯可军, 万德芳, 等, 2010.前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋.地质学报, 84(9): 1359-1373 http://d.old.wanfangdata.com.cn/Periodical/dizhixb201009010
|
李志红, 朱祥坤, 唐索寒, 2012.鞍山-本溪地区条带状铁矿的成矿机理及地球早期的海洋环境——来自Fe同位素和元素地球化学的证据.岩石学报, 28(11): 3545-3558
|
毛德宝, 沈保丰, 李俊建, 等, 1997.辽北清原地区太古宙地质演化及其对成矿的控制作用.前寒武纪研究进展, 20(3): 1-10.
|
彭自栋, 2018.华北克拉通新太古代清原绿岩带VMS-BIF共生组合成矿构造背景及沉积环境(博士学位论文).北京: 中国科学院地质与地球物理研究所.
|
彭自栋, 王长乐, 赵刚, 等, 2017.前寒武纪VMS与BIF铁矿床共生组合研究进展.矿床地质. 36(4): 905-920. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704008
|
彭自栋, 张连昌, 王长乐, 等, 2018.新太古代清原绿岩带下甸子BIF铁矿地质特征及含黄铁矿条带BIF的成因探讨.岩石学报. 34(2): 398-426. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201802016
|
祁思敬, 王承义, 杨剑平, 等, 1983.河北内丘杏树台前寒武纪变质火山岩系及层状硫化物矿床成因.河北地质学院学报, 22(2): 1-16.
|
万渝生, 宋彪, 杨淳, 等, 2005.辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U-Pb年代学及其地质意义.地质学报, 79(1): 78-87. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200501009
|
王长乐, 张连昌, 刘利, 等, 2012.前寒武纪条带状铁建造研究进展和值得进一步讨论的问题.矿床地质, 31(6): 1311-1325.
|
杨秀清, 张作衡, 段士刚, 等, 2016.北祁连桦树沟铜矿床矿物学和硫同位素特征及其成矿意义.矿床地质, 35(1):185-195. http://d.old.wanfangdata.com.cn/Periodical/kcdz201601012
|
于凤金, 2006.红透山式矿床成矿模式与找矿模型研究(博士学位论文).沈阳: 东北大学.
|
张连昌, 姬金生, 薛春纪, 等, 1997.甘肃桦树沟铁铜矿床地球化学及成因.西安地质学院学报, 19(4): 13-19.
|
张连昌, 翟明国, 万渝生, 等, 2012.华北克拉通前寒武纪BIF铁矿研究:进展与问题.岩石学报, 28(11): 3431-3445. http://d.old.wanfangdata.com.cn/Conference/7895390
|
张秋生, 李守义, 刘连登, 1984.中国早前寒武纪地质及成矿作用.长春:吉林人民出版社, 166-171.
|
张雅静, 孙丰月, 霍亮, 等, 2014.辽宁树基沟铜锌矿成矿时代及矿石再活化机制.吉林大学学报(地球科学版), 44(3):786-795. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201403007
|