• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 1
    Jan.  2021
    Turn off MathJax
    Article Contents
    Yun Long, Zhang Jin, Xu Wei, Liu Zhicheng, Zhang Jingjia, Zhao Heng, Zhang Beihang, 2021. Geometry, Kinematics and Regional Tectonic Significance of the Huahai Fault in the Western Hexi Corridor, NW China. Earth Science, 46(1): 259-271. doi: 10.3799/dqkx.2019.227
    Citation: Yun Long, Zhang Jin, Xu Wei, Liu Zhicheng, Zhang Jingjia, Zhao Heng, Zhang Beihang, 2021. Geometry, Kinematics and Regional Tectonic Significance of the Huahai Fault in the Western Hexi Corridor, NW China. Earth Science, 46(1): 259-271. doi: 10.3799/dqkx.2019.227

    Geometry, Kinematics and Regional Tectonic Significance of the Huahai Fault in the Western Hexi Corridor, NW China

    doi: 10.3799/dqkx.2019.227
    • Received Date: 2019-09-05
    • Publish Date: 2021-01-15
    • The NNW-SSE striking Huahai fault develops in the Huahai Basin in the western Hexi corridor. Its spatial distribution, kinematics and activity are significance for understanding the tectonic deformation and outgrowth of the northern margin of the Qinghai-Tibet Plateau. Based on the interpretation of satellite images, field surveying, trenching, optical luminescence dating and existing geophysical data, the characteristics of Huahai fault are reported. A landform scarp develops along the Huahai fault, which is approximate 8 km long from Shuangquanzi, Daquan to Xiaoquan. This scarp is caused by the fault related folding. The fault extends southward to the northern Kuantanshan and Heishan ranges indicated by scarps, springs and landforms. The Huahai fault was once a normal fault in the Early Cretaceous, and was inversed to be a thrust fault in the Late Cretaceous. During the Cenozoic, the northward growth of the Qinghai-Tibetan Plateau resulted in development of a series of sinistrally transpressive faults such as the Sanweishan, Ganxiashan, Kuantanshan and Taerwan-Dengdengshan-Chijiaoziwo faults. These faults are boundaries of blocks between the Sanweishan and Altyn Tagh faults, and cause the uplift of the mountain ranges along faults, and the northeastward movement of blocks among faults. The thrusting of the Huahai fault is the response of this recent tectonic event.

       

    • loading
    • Burchfiel, B.C., 2012. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Memoir of the Geological Society of America, 210:1-164. http://www.researchgate.net/publication/279770011_Tectonics_of_the_southeastern_Tibetan_Plateau_and_its_adjacent_foreland
      Chen, B.L., 2006. The Activity of the Xinminbao Fault from the Late Pleistocene to Holocene. Acta Geoscientica Sinica, 27(6):515-524 (in Chinese with English abstract). http://www.oalib.com/paper/1557720
      Chen, B.L., Wang, C.Y., Gong, Y.L., 2008. Late Cenozoic Activity of the Yumen Fault in the Western Segment of the Hexi Corridor, NW China. Geological Bulletin of China, 27(10):1709-1719 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgqydz200810013
      Chen, T., Liu Y.G., Min, W., et al., 2012. The Activity age of Taerwan Fault and Genesis of the Topographic Scarp. Seismology and Geology, 34(3):401-414 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ201203005.htm
      Chen, W.B., Xu, X.W., 2006. Sinistral Strike-slip Faults Along the Southern Alashan Margin and Eastwards Extending of the Altun Fault. Seismology and Geology, 28(2):319-324 (in Chinese with English abstract).
      Cunningham, D., Zhang, J., Li, Y. F., 2016. Late Cenozoic Transpressional Mountain Building Directly North of the Altyn Tagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China. Tectonophysics, 687:111-128. https://doi.org/10.1016/j.tecto.2016.09.010
      Dai, S., Fang, X.M., Song, C.H., et al., 2005. Early Uplift of the Northern Tibetan Plateau. Chinese Science Bulletin, 50(7):673-683 (in Chinese). doi: 10.1360/csb2005-50-7-673
      Elliott, J. R., Biggs, J., Parsons, B., et al., 2008. InSAR Slip Rate Determination on the Altyn Tagh Fault, Northern Tibet, in the Presence of Topographically Correlated Atmospheric Delays. Geophysical Research Letters, 35(12)::82-90. https://doi.org/10.1029/2008gl033659
      England, P., Houseman, G., 1986. Finite Strain Calculations of Continental Deformation:2. Comparison with the India-Asia Collision Zone. Journal of Geophysical Research:Solid Earth, 91(B3):3664-3676. https://doi.org/10.1029/jb091ib03p03664
      Fang, X.M., Zhao, Z.J., Li, J.J., et al., 2004. Magneto Stratigraphy of the Late Cenozoic Laojunmiao Anticline in the Northern Qilian Mountains and Its Implications for the Northern Tibetan Plateau Uplift. Science in China:Series D, Earth Sciences, 34(2):97-106 (in Chinese).
      Guo, C.H., Li, A., Liu R., 2018. A Preliminary Research on the Right-Lateral Strike-Slip Characteristics and the Structural Significance of the Northern Kantanshan Faults, Hexi Corridor, Based on High-Resolution Imagery. Seismology and Geology, 40(4):69-85(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201804006.htm
      Guo, Z.J., Zhang, Z.C., Zhang, C., et al., 2008. Lateral Growth of the Altyn Tagh Strike-Slip Fault at the North Margin of the Qinghai-Tibet Plateau:Late Cenozoic Strike-Slip Faults and the Crustal Stability in the Beishan Area, Gansu, China. Geological Bulletin of China, 27(10):1678-1686 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252287889.html
      Hu, Q.X., Wang, X.Y., Meng, X.Q., et al., 2018. Paleoclimatic Implications of Oxygen Isotope from Authigenic Carbonates in Loess Deposit of Northeastern Tibetan Plateau. Earth Science, 43(11):4128-4137(in Chinese with English abstract). http://www.researchgate.net/publication/330192348_Paleoclimatic_Implications_of_Oxygen_Isotope_from_Authigenic_Carbonates_in_Loess_Deposit_of_Northeastern_Tibetan_Plateau
      Jin, S., Sheng, Y., Liang, H.D., et al., 2019. Lithospheric Electrical Structure along Shenzha-Shuanghu Profile in Tibetan Plateau and Its Significance. Earth Science, 44(6):1773-1783(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906002.htm
      Lamb, M. A., Hanson, A. D., Graham, S. A., et al., 1999. Left-Lateral Sense Offset of Upper Proterozoic to Paleozoic Features Across the Gobi Onon, Tost, and Zuunbayan Faults in Southern Mongolia and Implications for other Central Asian Faults. Earth and Planetary Science Letters, 173(3):183-194. https://doi.org/10.1016/s0012-821x(99)00227-7
      Li, J.J., Fang, X.M., Pan, B.T., et al., 2001. Late Cenozoic Intensive Uplift of Qinghai-Xizang Plateau and Its Impacts on Environments in Surrounding Area. Quaternary Sciences. 21(5):381-391 (in Chinese with English abstract).
      Li, J.M., 2006. Structure Character and Petroleum Exploration of Jiuquan Basin(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Li, Q.S., 1994. Distribution and Active Characteristics of the Huahai Fault. Crustal Structure and Crustal Stress Proceedings, Beijing, 45-51(in Chinese with English abstract).
      Li, Y.H., Wang, Q.L., Cui, D.X., 2015. Inversion of Present-Day Fault Slip Rate Along Altyn Tagh Fault Constrained by GPS Data. Seismology and Geology, 37(3):869-879 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201503016.htm
      Li, A., Wang X.X., Zhang S.M., et al., 2016. The Slip Rate and Paleoearthquakes of the Yumen Fault in the Northern Qilian Mountains since the Late Pleistocene. Seismology and Geology, 38(4):897-910 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ201604008.htm
      Liu, D.L., Song, C.H., Fang, X.M., 2012. Magnetostratigraphy of Yumen Conglomerate in the Yunmushan Region and Its Implication for Deformation and Uplift of the NE Tibetan Plateau. Acta Geological Sinica, 86(6):898-905(in Chinese with English abstract). http://www.cqvip.com/QK/95080X/201206/42212469.html
      Ma, J., 1999. Changing Viewpoint from Fault to Block:A Discussion about the Role of Active Block in Seismicity. Earth Science Frontiers, 6(4):363-370 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY199904029.htm
      Meyer, B., Tapponnier, P., Gaudemer, Y., et al., 1996. Rate of Left-Lateral Movement along the Easternmost Segment of the Altyn Tagh Fault, East of 96°E (China). Geophysical Journal International, 124(1):29-44. https://doi.org/10.1111/j.1365-246x.1996.tb06350.x
      Min, W., Liu, Y.G., Chen, T., et al., 2016. The Quantitate Study on Activity of Dengengshan-Chijiaciwo Fault since Late Quaternary. Seismology and Geology, 38(3):503-522 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201603002.htm
      Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201):419-426. https://doi.org/10.1126/science.189.4201.419
      Qin, S.H., Wang, X.S., Kang, N.C., et al., 2013. An Analysis of the Effect from Altyn Tagh Fault upon Jiuquan Basin. Acta Petrologic Sinica, 29(8):2895-2905 (in Chinese with English abstract).
      Shi, Z.T., Ye, S.G., Zhao, Z.J., et al., 2001. ESR Age of Late Cenozoic Stratigraphy in Jiuxi Basin. Science in China, Ser. D Earth Science, 2001(S1):163-168 (in Chinese).
      Stirling, M., Goded, T., Berryman, K., et al., 2013. Selection of Earthquake Scaling Relationships for Seismic-Hazard Analysis. Bulletin of the Seismological Society of America, 103(6):2993-3011. https://doi.org/10.1785/0120130052
      Wang, W.T., Zhang, P.Z., Pang, J.Z., 2016. The Cenozoic Growth of the Qilian Shan in the Northeastern Tibetan Plateau:A Sedimentary Archive from the Jiuxi Basin. Journal of Geophysical Research:Solid Earth, 121(4):2235-2257. https://doi.org/10.1002/2015jb012689
      Webb, L. E., Johnson, C. L., Minjin, C., 2010. Late Triassic Sinistral Shear in the East Gobi Fault Zone, Mongolia. Tectonophysics, 495(3/4):246-255. https://doi.org/10.1016/j.tecto.2010.09.033
      Wells, D.L., Coppersmith K.J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4):974-1002. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/4/974
      Xu, X.W., Tapponnier, P., Woerd V.D., 2005. Late Quaternary Sinistral Slip Rate along the Altyn Tagh Fault and Its Structural Transformation Model. Science in China, Ser. D Earth Sciences, 8(3):384-397. http://d.wanfangdata.com.cn/Periodical_zgkx-ed200503010.aspx
      Yu, Z.Y., Min, W., Chen, T., 2015. Late Quaternary Tectonic Deformation of the Eastern End of the Altyn Tagh Fault. Acta Geologica Sinica-English Edition, 89(6):1813-1834. https://doi.org/10.1111/1755-6724.12599
      Yue, Y. J., Graham, S. A., Ritts, B. D., et al., 2005. Detrital Zircon Provenance Evidence for Large-Scale Extrusion along the Altyn Tagh Fault. Tectonophysics, 406(3/4):165-178. https://doi.org/10.1016/j.tecto.2005.05.023
      Yun, L., Zhang J., Xiao, Q.B., et al., 2019. The Thrust Movement and Deep Structural Characteristic of the Sanweishan Fault in the Northern Margin of the Tibetan Plateau since the Late Quaternary. Acta Geological Sinica, 93(9):2107-2122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201909001.htm
      Zhang, N., Zheng, W.J., Liu, X.W., et al., 2016. Kinematics Characteristics of Heishan Fault in the Western Hexi Corridor and Its Implications for Regional Tectonic Transformation. Journal of Earth Sciences and Environment, 38(02):245-257 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201602010.htm
      Zhao, Z.J., Fang, X.M., Li, J.J. 2001. Late Cenozoic Magnetic Strata in Jiudong Basin, Northern Margin of Qilian Mountains. Science in China, Ser. D Earth Science, 31:195-201 (in Chinese). doi: 10.1007/BF02911993
      Zheng, W. J., Zhang, P. Z., Ge, W. P., et al., 2013. Late Quaternary Slip Rate of the South Heli Shan Fault (Northern Hexi Corridor, NW China) and Its Implications for Northeastward Growth of the Tibetan Plateau. Tectonics, 32(2):271-293. https://doi.org/10.1002/tect.20022
      Zhu, L.D., Wang, C.S., Zheng, R. C., et al., 2005. Evolutionary Characteristics of the Jiuquan Basin and Character of the Kuantaishan-Heishan Fault on the Northeastern Margin of the Qinghai-Tibet Plateau. Geological Bulletin of China, 24(9):837-840 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200509009.htm
      陈柏林, 2006.新民堡断裂新构造活动特征.地球学报, 27(6):515-524. doi: 10.3321/j.issn:1006-3021.2006.06.001
      陈柏林, 王春宇, 宫玉良, 2008.河西走廊盆地西段玉门断裂晚新生代的活动特征.地质通报, 27(10):1709-1719 doi: 10.3969/j.issn.1671-2552.2008.10.013
      陈涛, 刘玉刚, 闵伟, 等, 2012.塔尔湾断裂活动时代厘定及地貌陡坎成因分析.地震地质, 34(3):401-414. doi: 10.3969/j.issn.0253-4967.2012.03.002
      陈文彬, 徐锡伟, 2006.阿拉善地块南缘的左旋走滑断裂与阿尔金断裂带的东延.地震地质, 28(2):319-324. doi: 10.3969/j.issn.0253-4967.2006.02.015
      戴霜, 方小敏, 宋春晖, 等, 2005.青藏高原北部的早期隆升.科学通报, 50(7):673-683. doi: 10.3321/j.issn:0023-074X.2005.07.011
      方小敏, 赵志军, 李吉均, 等, 2004.祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升.中国科学D辑:地球科学, 34(2):97-106 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200402000.htm
      郭长辉, 李安, 刘睿, 等, 2018.基于高分辨率影像的宽滩山北缘断裂带右旋走滑特征及其构造意义的初步研究.地震地质, 40(4):69-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201804006.htm
      郭召杰, 张志诚, 张臣, 等, 2008.青藏高原北缘阿尔金走滑边界的侧向扩展——甘肃北山晚新生代走滑构造与地壳稳定性分析.地质通报, 27(10):1678-1686. doi: 10.3969/j.issn.1671-2552.2008.10.010
      胡泉旭, 王先彦, 孟先强, 等, 2018.青藏高原东北部黄土次生碳酸盐氧同位素的古气候意义.地球科学, 43(11):4128-4137 doi: 10.3799/dqkx.2018.228
      金胜, 盛跃, 梁宏达, 等, 2019.青藏高原申扎-双湖剖面岩石圈电性结构特征及其含义.地球科学, 44(6): 1773-1783 doi: 10.3799/dqkx.2019.015
      李安, 王晓先, 张世民, 等, 2016.祁连山北缘玉门断裂晚更新世以来的活动速率及古地震.地震地质, 38(4):897-910 doi: 10.3969/j.issn.0253-4967.2016.04.008
      李吉均, 方小敏, 潘保田, 等, 2001.新生代晚期青藏高原强烈隆起及其对周边环境的影响第四纪研究. 21(5):381-391 doi: 10.3321/j.issn:1001-7410.2001.05.001
      李明杰, 2006.酒泉盆地构造特征与油气勘探(博士毕业论文).北京: 中国地质大学.
      李庆山, 1994.花海断裂几何展布及新活动特征.地壳构造与地壳应力文集, 北京, 45-51 https://www.cnki.com.cn/Article/CJFDTOTAL-SEIS199400005.htm
      李煜航, 王庆良, 崔笃信, 等, 2015.利用GPS数据反演阿尔金断裂现今滑动速率.地震地质, 37(3):869-879 doi: 10.3969/j.issn.0253-4967.2015.03.016
      马瑾, 1999.从断层中心论向块体中心论转变——论活动块体在地震中的作用, 地学前缘, 6(4):363-370 doi: 10.3321/j.issn:1005-2321.1999.04.020
      刘栋梁, 宋春晖, 方小敏, 等, 2012.榆木山地区玉门砾岩磁性地层及其对青藏高原东北部变形隆升意义.地质学报, 86(6):898-905. doi: 10.3969/j.issn.0001-5717.2012.06.005
      闵伟, 刘玉刚, 陈涛, 等, 2016.登登山-池家刺窝断裂晚第四纪活动性定量研究.地震地质, 38(3):503-522 doi: 10.3969/j.issn.0253-4967.2016.03.002
      史正涛, 业渝光, 赵志军, 等, 2001.酒西盆地晚新生代地层的ESR年代.中国科学D辑:地球科学, 2001(S1):163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1024.htm
      覃素华, 王小善, 康南昌, 等, 2013.阿尔金断裂对酒泉盆地的控制作用分析.岩石学报, 29(8):2985-2905 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308025.htm
      云龙, 张进, 肖骑斌, 等, 2019.青藏高原北缘三危山断裂晚第四纪以来的逆冲运动及其深部构造特征.地质学报, 93(9):2107-2122. doi: 10.3969/j.issn.0001-5717.2019.09.001
      张宁, 郑文俊, 刘兴旺, 等, 2016.河西走廊西端黑山断裂运动学特征及其在构造转换中的意义.地球科学与环境学报, 38(2):245-257. doi: 10.3969/j.issn.1672-6561.2016.02.012
      朱利东, 王成善, 郑荣才, 等, 2005.青藏高原东北缘酒泉盆地的演化特征与宽台山-黑山断裂的性质.地质通报, 24(9):837-840. doi: 10.3969/j.issn.1671-2552.2005.09.009
      赵志军, 方小敏, 李吉均, 2001.祁连山北缘酒东盆地晚新生代磁性地层.中国科学D辑:地球科学, 31:195-201. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1029.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(2)

      Article views (2389) PDF downloads(139) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return