• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 12
    Dec.  2019
    Turn off MathJax
    Article Contents
    Wang Chunguang, Xu Wenliang, 2019. An Experimental of Crust-Mantle Interaction in Subduction Zones: Implications for Genesis of Mantle Heterogeneity. Earth Science, 44(12): 4112-4118. doi: 10.3799/dqkx.2019.230
    Citation: Wang Chunguang, Xu Wenliang, 2019. An Experimental of Crust-Mantle Interaction in Subduction Zones: Implications for Genesis of Mantle Heterogeneity. Earth Science, 44(12): 4112-4118. doi: 10.3799/dqkx.2019.230

    An Experimental of Crust-Mantle Interaction in Subduction Zones: Implications for Genesis of Mantle Heterogeneity

    doi: 10.3799/dqkx.2019.230
    • Received Date: 2019-09-01
    • Publish Date: 2019-12-15
    • A series of experiments reacting peridotite with melts derived from partial melting of eclogites was accomplished in order to better understand factors that control crust-mantle interaction in subduction zones. The experiments were conducted using the reaction couple method at 0.8-3.0 GPa and 1 200-1 425℃. The experimental results show that kinetics and consequence of melt-rock reaction are controlled by factors including major element composition and H2O in reacting melt, temperature, pressure, and physical state of reacting peridotite. Orthopyroxene enrichment in mantle beneath subduction zones is a result of interaction between melt derived from recycling continental crust and overlaying mantle. Formation of orthopyroxenite veins in mantle rocks is related to hydrous mantle metasomatism. Garnet-bearing and garnet-rich lithologies in mantle rocks were likely formed by melt-rock reaction in the low-temperature regime.

       

    • loading
    • Beck, A.R., Morgan, Z.T., Liang, Y., et al., 2006.Dunite Channels as Viable Pathways for Mare Basalt Transport in the Deep Lunar Mantle.Geophysical Research Letters, 33(1):L01202. https://doi.org/10.1029/2005gl024008
      Hirschmann, M.M., Kogiso, T., Baker, M.B., et al., 2003.Alkalic Magmas Generated by Partial Melting of Garnet Pyroxenite.Geology, 31(6):481-484. doi: 10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2
      Johnston, A.D., Wyllie, P.J., 1989.The System Tonalite-Peridotite-H2O at 30 kbar, with Applications to Hyperdization in Subduction Zone Magmatism.Contributions to Mineralogy and Petrology, 102(3):190-202. doi: 10.1007/BF00371296
      Kelemen, P.B., Hart, S.R., Bernstein, S., 1998.Silica Enrichment in the Continental Upper Mantle via Melt/Rock Reaction.Earth and Planetary Science Letters, 164(1):387-406. http://cn.bing.com/academic/profile?id=93711ed45d60d72feada9a741633ed70&encoded=0&v=paper_preview&mkt=zh-cn
      Liu, Y.S., Gao, S., Lee, C.T.A., et al., 2005.Melt-Peridotite Interactions:Links between Garnet Pyroxenite and High-Mg# Signature of Continental Crust.Earth and Planetary Science Letter, 234(1-2):39-57. https://doi.org/10.1016/j.epsl.2005.02.034
      Lo Cascio, M., 2008.Kinetics of Partial Melting and Melt-Rock Reaction in the Earth's Mantle(Dissertation).Brown University, U.S.A..
      Morgan, Z., Liang, Y., 2005.An Experimental Study of the Kinetics of Lherzolite Reactive Dissolution with Applications to Melt Channel Formation.Contributions to Mineralogy and Petrology, 150(4):369-385. https://doi.org/10.1007/s00410-005-0033-8
      Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356. https://doi.org/10.1016/S0009-2541(99)00106-0
      Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling.J.Petrol., 36:891-931. doi: 10.1093/petrology/36.4.891
      Sen, C., Dunn, T., 1995.Experimental Modal Metasomatism of a Spinel Lherzolite and the Production of Amphibole-Bearing Peridotite.Contributions to Mineralogy and Petrology, 119(4):422-432. https://doi.org/10.1007/bf00286939
      Su, B., Chen, Y., Guo, S., et al., 2019.Garnetite and Pyroxenite in the Mantle Wedge Formed by Slab-Mantle Interactions at Different Melt/Rock Ratios.Journal of Geophysical Research:Solid Earth, 124(4):6504-6522. http://cn.bing.com/academic/profile?id=ef05de6118e49f4ff647ba0fb878f992&encoded=0&v=paper_preview&mkt=zh-cn
      Wang, C., Liang, Y., Xu, W., 2015.Formations of Amphibole-Gabbro and Amphibole-Bearing Peridotite through Hydrous Melt-Peridotite Reaction and In Situ Crystallization: An Experimental Study.Abstract 142-2 Presented at 2015 Annual Meeting, GSA.Baltimore, MD.
      Wang, C.G., Liang, Y., Dygert, N., et al., 2016.Formation of Orthopyroxenite by Reaction between Peridotite and Hydrous Basaltic Melt:An Experimental Study.ContributionstoMineralogy and Petrology, 171(8-9):77. https://doi.org/10.1007/s00410-016-1287-z
      Wang, C.G., Liang, Y., Xu, W.L., et al., 2013.Effect of Melt Composition on Basalt and Peridotite Interaction:Laboratory Dissolution Experiments with Applications to Mineral Compositional Variations in Mantle Xenoliths from the North China Craton.Contributions to Mineralogy and Petrology, 166(5):1469-1488. https://doi.org/10.1007/s00410-013-0938-6
      Wang, C.G., Lo Cascio, M., Liang, Y., et al., 2019.An Experimental Study of Peridotite Dissolution in Eclogite-Derived Melts:Implications for Styles of Melt-Rock Interaction in Lithospheric Mantle beneath the North China Craton.Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2019.09.022
      Wang, C.G., Xu, W.L., Yang, D.B., et al., 2018.Olivine Oxygen Isotope Evidence for Intracontinental Recycling of Delaminated Continental Crust.Geochemistry, Geophysics, Geosystems, 19(7):1913-1924. https://doi.org/10.1029/2017gc007284
      Xu.W., Hergt, J.M., Gao, S., et al., 2008.Interaction of Adakitic Melt-Peridotite:Implications for the High-Mg# Signature of Mesozoic Adakitic Rocks in the Eastern North China Craton.Earth and Planetetary Science Letters, 265:123-137. https://doi.org/10.1016/j.epsl.2007.09.041
      Xu, W.L., Yang, D.B., Gao, S., et al., 2010.Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton:The Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning.Chemical Geology, 270(1-4):257-273. https://doi.org/10.1016/j.chemgeo.2009.12.006
      Yaxley, G.M., Green, D.H., 1998.Reactions between Eclogite and Peridotite:Mantle Refertilisation by Subduction of Oceanic Crust.Schweizerische Mineralogische Und Petrographische Mitteilungen, 78(2):243-255. https://www.researchgate.net/publication/234065726_Reactions_between_eclogite_and_peridotite_Mantle_refertilisation_by_subduction_of_oceanic_crust
      Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2007.Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton:Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis.Geochimica et Cosmochimica Acta, 71(21):5203-5225. https://doi.org/10.1016/j.gca.2007.07.028
      Zheng, J.P., O'Reilly, S.Y., Griffin, W., et al., 2001.Relict Refractory Mantle beneath the Eastern North China Block:Significance for Lithosphere Evolution.Lithos, 57(1):43-66. https://doi.org/10.1016/s0024-4937(00)00073-6
      Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519. https://doi.org/10.1093/nsr/nww049
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (5111) PDF downloads(115) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return