Citation: | Liu Penglei, Zhang Junfeng, Jin Zhenmin, 2019. Occurrences and Preservation Mechanisms of Coesite in Ultrahigh-Pressure Metamorphic Rocks. Earth Science, 44(12): 4028-4033. doi: 10.3799/dqkx.2019.231 |
Bohlen, S.R., Boettcher, A.L., 1982.The Quartz-Coesite Transformation:A Pressure Determination and the Effects of Other Components.Journal of Geophysical Research, 87(B8):7073-7078. doi: 10.1029/JB087iB08p07073
|
Chao, E.T.C., Shoemaker, E.M., Madsen, B.M., 1960.First Natural Occurrence of Coesite.Science, 132(3421):220-222. https://doi.org/10.1126/science.132.3421.220
|
Chopin, C., 1984.Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences.Contributions to Mineralogy and Petrology, 86(2):107-118. doi: 10.1007/BF00381838
|
Coes, L., 1953.A New Dense Crystalline Silica.Science, 118(3057):131-132. doi: 10.1126/science.118.3057.131
|
Gillet, P., Ingrin, J., Chopin, C., 1984.Coesite in Subducted Continental Crust:P-T History Deduced from an Elastic Model.Earth and Planetary Science Letters, 70(2):426-436. doi: 10.1016/0012-821X(84)90026-8
|
Green, H.W., 1972.Metastable Growth of Coesite in Highly Strained Quartz.Journal of Geophysical Research, 77(14):2478-2482. doi: 10.1029/JB077i014p02478
|
Guiraud, M., Powell, R., 2006.P-V-T Relationships and Mineral Equilibria in Inclusions in Minerals.Earth and Planetary Science Letters, 244(3-4):683-694. https://doi.org/10.1016/j.epsl.2006.02.021
|
Hermann, J., Rubatto, D., 2014.Subduction of Continental Crust to Mantle Depth:Geochemistry of Ultrahigh-Pressure Rocks.Treatise on Geochemistry, 4:309-340. http://d.old.wanfangdata.com.cn/Conference/9122445
|
Hirth, G., Tullis, J., 1994.The Brittle-Plastic Transition in Experimentally Deformed Quartz Aggregates.Journal of Geophysical Research, 99(B6):11731-11747. doi: 10.1029/93JB02873
|
Katayama, I., Nakashima, S., Yurimoto, H., 2006.Water Content in Natural Eclogite and Implication for Water Transport into the Deep Upper Mantle.Lithos, 86(3-4):245-259. doi: 10.1016/j.lithos.2005.06.006
|
Lathe, C., Koch-Müller, M., Wirth, R., et al., 2005.The Influence of OH in Coesite on the Kinetics of the Coesite-Quartz Phase Transition.American Mineralogist, 90(1):36-43. https://doi.org/10.2138/am.2005.1662
|
Liou, J.G., Zhang, R.Y., 1996.Occurrences of Intergranular Coesite in Ultrahigh-P Rocks from the Sulu Region, Eastern China:Implications for Lack of Fluid during Exhumation.American Mineralogist, 81(9-10):1217-1221. doi: 10.2138/am-1996-9-1020
|
Liou, J.G., Zhang, R.Y., Liu, F.L., et al., 2012.Mineralogy, Petrology, U-Pb Geochronology, and Geologic Evolution of the Dabie-Sulu Classic Ultrahigh-Pressure Metamorphic Terrane, East-Central China.American Mineralogist, 97(10):1533-1543. https://doi.org/10.2138/am.2012.4169
|
Liu, F.L., Liou, J.G., 2011.Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism:A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks.Journal of Asian Earth Sciences, 40(1):1-39. doi: 10.1016/j.jseaes.2010.08.007
|
Liu, P.L., Massonne, H.J., Zhang, J.F., et al., 2017.Intergranular Coesite and Coesite Inclusions in Dolomite from the Dabie Shan:Constraints on the Preservation of Coesite in UHP Rocks.Terra Nova, 29(3):154-161. doi: 10.1111/ter.12258
|
Liu, P.L., Wu, Y., Chen, Y., et al., 2015.UHP Impure Marbles from the Dabie Mountains:Metamorphic Evolution and Carbon Cycling in Continental Subduction Zones.Lithos, 212-215:280-297. doi: 10.1016/j.lithos.2014.11.018
|
Liu, W.P., Wu, X.L., Zhang, X.L., et al., 2018.Micro-FTIR Analysis and First-Principle Calculation of Structural Water in Coesite from NAMs.Earth Science, 43(5):1474-1480(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805008
|
Lu, R., Keppler, H., 1997.Water Solubility in Pyrope to 100 kbar.Contributions to Mineralogy and Petrology, 129(1):35-42. doi: 10.1007/s004100050321
|
Lü, Z., Zhang, L.F., Chen, Z.Y., 2014.Jadeite- and Dolomite-Bearing Coesite Eclogite from Western Tianshan, NW China.European Journal of Mineralogy, 26(2):245-256. doi: 10.1127/0935-1221/2014/0026-2373
|
Mosenfelder, J.L., Bohlen, S.R., 1997.Kinetics of the Coesite to Quartz Transformation.Earth and Planetary Science Letters, 153(1-2):133-147. doi: 10.1016/S0012-821X(97)00159-3
|
Mosenfelder, J.L., Schertl, H.P., Smyth, J.R., et al., 2005.Factors in the Preservation of Coesite:The Importance of Fluid Infiltration.American Mineralogist, 90(5-6):779-789. doi: 10.2138/am.2005.1687
|
Perrillat, J.P., Daniel, I., Lardeaux, J.M., et al., 2003.Kinetics of the Coesite-Quartz Transition:Application to the Exhumation of Ultrahigh-Pressure Rocks.Journal of Petrology, 44(4):773-788. https://doi.org/10.1093/petrology/44.4.773
|
Richter, B., Stünitz, H., Heilbronner, R., 2016.Stresses and Pressures at the Quartz-to-Coesite Phase Transformation in Shear Deformation Experiments.Journal of Geophysical Research:Solid Earth, 121(11):8015-8033. doi: 10.1002/2016JB013084
|
Schertl, H.P., Okay, A.I., 1994.A Coesite Inclusion in Dolomite in Dabie Shan, China:Petrological and Rheological Significance.European Journal of Mineralogy, 6(6):995-1000. doi: 10.1127/ejm/6/6/0995
|
Schönig, J., von Eynatten, H., Meinhold, G., et al., 2019.Diamond and Coesite Inclusions in Detrital Garnet of the Saxonian Erzgebirge, Germany.Geology, 47(8):715-718. doi: 10.1130/G46253.1
|
Sheng, Y.M., Xia, Q.K., Hao, Y.D., et al., 2005.Water in UHP Eclogites at Shuanghe, Dabieshan:Micro-FTIR Analysis.Earth Science, 30(6):673-684(in Chinese with English abstract).
|
Smyth, J.R., 1977.Quartz Pseudomorphs after Coesite.American Mineralogist, 62:828-830.
|
van der Molen, I., van Roermund, H.L.M., 1986.The Pressure Path of Solid Inclusions in Minerals:The Retention of Coesite Inclusions during Uplift.Lithos, 19(3-4):317-324. doi: 10.1016/0024-4937(86)90030-7
|
Wang, L., Wang, S.J., Brown, M., et al., 2018.On the Survival of Intergranular Coesite in UHP Eclogite.Journal of Metamorphic Geology, 36:173-194. doi: 10.1111/jmg.12288
|
Withers, A.C., Wood, B.J., Carrol, M.R., 1998.The OH Content of Pyrope at High Pressure.Chemical Geology, 147(1-2):161-171. doi: 10.1016/S0009-2541(97)00179-4
|
Yang, J.J., Fan, Z.F., Yu, C., et al., 2014a.Coseismic Formation of Eclogite Facies Cataclasite Dykes at Yangkou in the Chinese Su-Lu UHP Metamorphic Belt.Journal of Metamorphic Geology, 32:937-960. doi: 10.1111/jmg.12101
|
Yang, J.J., Huang, M.X., Wu, Q.Y., et al., 2014b.Coesite-Bearing Eclogite Breccia:Implication for Coseismic Ultrahigh-Pressure Metamorphism and the Rate of the Process.Contributions to Mineralogy and Petrology, 167(6):1013-1030. doi: 10.1007/s00410-014-1013-7
|
Yang, J.J., Zhang, H.R., Chen, A.P., et al., 2016.Petrological Evidence for Shock-Induced High-P Metamorphism in a Gabbro.Journal of Metamorphic Geology, 35(2):121-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=75949299ab8643147eef7eac2ca1cc86
|
Ye, K., Hirajima, T., Ishiwatari, A., et al., 1996.Significance of Interstitial Coesite in Eclogite from Yangkou, Qingdao City, Eastern Shandong Province.Chinese Science Bulletin, 41(15):1047-1048(in Chinese).
|
Zhang, R.Y., Liou, J.G., 1996.Coesite Inclusions in Dolomite from Eclogite in the Southern Dabie Mountains, China:The Significance of Carbonate Minerals in UHPM Rocks.American Mineralogist, 81(1-2):181-186. doi: 10.2138/am-1996-1-222
|
Zhou, Y.S., He, C.R., Song, J., et al., 2005.An Experiment Study of Quartz-Coesite Transition at Differential Stress.Chinese Science Bulletin, 50(5):446-451. doi: 10.1007/BF02897461
|
刘卫平, 吴秀玲, 张晓玲, 等, 2018.NAMs柯石英中结构水的红外光谱和第一性原理计算.地球科学, 43(5):1474-1480. doi: 10.3799/dqkx.2018.406
|
盛英明, 夏群科, 郝艳东, 等, 2005.大别山双河超高压榴辉岩中的水:微区红外光谱分析.地球科学, 30(6):673-684. doi: 10.3321/j.issn:1000-2383.2005.06.004
|
叶凯, 平岛崇男, 石渡明, 等, 1996.青岛仰口榴辉岩中粒间柯石英的发现及其意义.科学通报, 41(15):1047-1048. http://d.old.wanfangdata.com.cn/Conference/200310
|