• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 12
    Dec.  2019
    Turn off MathJax
    Article Contents
    Zhao Zifu, Dai Fuqiang, Chen Qi, 2019. Continental Slab-Mantle Interaction: Geochemical Evidence from Post-Collisional Andesitic Rocks in the Dabie Orogen. Earth Science, 44(12): 4119-4127. doi: 10.3799/dqkx.2019.244
    Citation: Zhao Zifu, Dai Fuqiang, Chen Qi, 2019. Continental Slab-Mantle Interaction: Geochemical Evidence from Post-Collisional Andesitic Rocks in the Dabie Orogen. Earth Science, 44(12): 4119-4127. doi: 10.3799/dqkx.2019.244

    Continental Slab-Mantle Interaction: Geochemical Evidence from Post-Collisional Andesitic Rocks in the Dabie Orogen

    doi: 10.3799/dqkx.2019.244
    • Received Date: 2019-09-02
    • Publish Date: 2019-12-15
    • Crustal material subducted to mantle depths inevitably interacted with the mantle wedge at the slab-mantle interface. This may generate a variety of ultramafic metasomatites that served as the mantle source of mafic igneous rocks in collisional orogens. Therefore, mafic igneous rocks in collisional orogens are the important target to study the recycling of subdcuted crustal materials and its associated crust-mantle interaction. In order to decipher the mechanism and processes of the recycling of subducted continental crustal materials, a combined study of element and isotope geochemistry was performed for post-collisional andesitic volcanics from the Dabie orogen, China. SIMS zircon U-Pb ages for these volcanic rocks are 124±3 to 130±2 Ma, indicating that they formed at Early Cretaceous. In addition, the relict zircons have Middle Neoproterozoic and Triassic U-Pb ages, respectively, corresponding to the ages of protolith formation and ultrahigh-pressure metamorphism (UHP) for UHP metaigenous rocks in the Dabie-Sulu orogenic belt. They have island-arc basalts (IAB)-like trace-element patterns, enriched Sr-Nd-Hf isotope compositions, and variable zircon δ18O values mostly different from the normal mantle. These element and isotope features indicate that the post-collisional andesitic volcanics are the products of partial melting of metasomatically enriched orogenic lithospheric mantle. During the Triassic subduction of the South China block (SCB) beneath the North China block (NCB), the overlying NCB lithospheric mantle wedge peridotite was metasomatized by felsic melts originated from the subdcuted SCB continental crust, the melt-peridotite reaction in the continental subduction channel generated fertile and enriched metasomatites of mafic composition. Partial melting of such metasomatites in the Early Cretaceous gave rise to these andesitic volcanics. Therefore, the mantle sources for post-collisional mafic igneous rocks in collisional orogens would be generated by the slab-mantle interaction in continental subduction channel, and the lithochemical and geochemical composition of these mafic rocks is dictated by the proportion of felsic melts incorporating into the mantle wedge.

       

    • loading
    • Chen, L., Zhao, Z.F., 2017.Origin of Continental Arc Andesites:The Composition of Source Rocks is the Key.Journal of Asian Earth Sciences, 145:217-232. https://doi.org/10.1016/j.jseaes.2017.04.012
      Chen, L., Zhao, Z.F., Zheng, Y.F., 2014.Origin of Andesitic Rocks:Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China.Lithos, 190-191:220-239. https://doi.org/10.1016/j.lithos.2013.12.011
      Chopin, C., 1984.Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences.Contributions to Mineralogy and Petrology, 86(2):107-118. doi: 10.1007/BF00381838
      Cloos, M., Shreve, R.L., 1988a.Subduction-Channel Model of Prism Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins:1.Background and Description.Pure and Applied Geophysics PAGEOPH, 128(3-4):455-500. doi: 10.1007/BF00874548
      Cloos, M., Shreve, R.L., 1988b.Subduction-Channel Model of Prism Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins:2.Implications and Discussion.Pure and Applied Geophysics PAGEOPH, 128(3-4):501-545. doi: 10.1007/BF00874549
      Dai, F.Q., Zhao, Z.F., Dai, L.Q., et al., 2016.Slab-Mantle Interaction in the Petrogenesis of Andesitic Magmas:Geochemical Evidence from Postcollisional Intermediate Volcanic Rocks in the Dabie Orogen, China.Journal of Petrology, 57(6):1109-1134. https://doi.org/10.1093/petrology/egw034
      Dai, F.Q., Zhao, Z.F., Zheng, Y.F., 2017a.Partial Melting of the Orogenic Lower Crust:Geochemical Insights from Post-Collisional Alkaline Volcanics in the Dabie Orogen.Chemical Geology, 454:25-43. https://doi.org/10.1016/j.chemgeo.2017.02.022
      Dai, F.Q., Zhao, Z.F., Zheng, Y.F., et al., 2019.The Geochemical Nature of Mantle Sources for Two Types of Cretaceous Basaltic Rocks from Luxi and Jiaodong in East-Central China.Lithos, 344-345:409-424. https://doi.org/10.1016/j.lithos.2019.07.007
      Dai, L.Q., Zhao, Z.F., Zheng, Y.F., 2014.Geochemical Insights into the Role of Metasomatic Hornblendite in Generating Alkali Basalts.Geochemistry, Geophysics, Geosystems, 15(10):3762-3779. https://doi.org/10.1002/2014gc005486
      Dai, L.Q., Zhao, Z.F., Zheng, Y.F., 2015.Tectonic Development from Oceanic Subduction to Continental Collision:Geochemical Evidence from Postcollisional Mafic Rocks in the Hong'an-Dabie Orogens.Gondwana Research, 27(3):1236-1254. doi: 10.1016/j.gr.2013.12.005
      Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2011.Zircon Hf-O Isotope Evidence for Crust-Mantle Interaction during Continental Deep Subduction.Earth and Planetary Science Letters, 308(1):229-244. https://doi.org/10.1016/j.epsl.2011.06.001.
      Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2012.The Nature of Orogenic Lithospheric Mantle:Geochemical Constraints from Postcollisional Mafic-Ultramafic Rocks in the Dabie Orogen.Chemical Geology, 334:99-121. https://doi.org/10.1016/j.chemgeo.2012.10.009
      Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2017b.Geochemical Distinction between Carbonate and Silicate Metasomatism in Generating the Mantle Sources of Alkali Basalts.Journal of Petrology, 58(5):863-884. https://doi.org/10.1093/petrology/egx038
      Dai, L.Q., Zheng, F., Zhao, Z.F., et al., 2017c.Recycling of Paleotethyan Oceanic Crust:Geochemical Record from Postcollisional Mafic Igneous Rocks in the Tongbai-Hong'an Orogens.Geological Society of America Bulletin, 129(1-2):179-192. https://doi.org/10.1130/b31461.1
      Fan, W.M., Guo, F., Wang, Y.J., et al., 2004.Late Mesozoic Volcanism in the Northern Huaiyang Tectono-Magmatic Belt, Central China:Partial Melts from a Lithospheric Mantle with Subducted Continental Crust Relicts beneath the Dabie Orogen? Chemical Geology, 209(1-2):27-48. https://doi.org/10.1016/j.chemgeo.2004.04.020
      Gómez-Tuena, A., Straub, S.M., Zellmer, G.F., 2014.An Introduction to Orogenic Andesites and Crustal Growth.Geological Society, London, Special Publications, 385(1):1-13. https://doi.org/10.1144/sp385.16
      Hacker, B.R., Kelemen, P.B., Behn, M.D., 2011.Differentiation of the Continental Crust by Relamination.Earth and Planetary Science Letters, 307(3-4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024
      Hawkesworth, C.J., Hergt, J.M., Ellam, R.M., et al., 1991.Element Fluxes Associated with Subduction Related Magmatism.Philosophical Transactions of the Royal Society, 335(1638):393-405. https://doi.org/10.1098/rsta.1991.0054
      Hildreth, W., Moorbath, S., 1988.Crustal Contributions to Arc Magmatism in the Andes of Central Chile.Contributions to Mineralogy and Petrology, 98(4):455-489. https://doi.org/10.1007/BF00372365
      Hirose, K., 1997.Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High Magnesian Andesitic Melts.Geology, 25(1):42-44. doi: 10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2
      Hofmann, A.W., 1988.Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust.Earth and Planetary Science Letters, 90(3):297-314. doi: 10.1016/0012-821X(88)90132-X
      Hofmann, A.W., 1997.Mantle Geochemistry:The Message from Oceanic Volcanism.Nature, 385:219-229. https://doi.org/10.1038/385219a0
      Kelemen, P.B., Hanghøj, K., Greene, A.R., 2007.One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust.Treatise on Geochemistry, 3:1-70. https://doi.org/10.1016/b0-08-043751-6/03035-8
      Lee, C.T.A., 2014.Physics and Chemistry of Deep Continental Crust Recycling.Treatise on Geochemistry, 4:423-456. https://doi.org/10.1016/b978-0-08-095975-7.00314-4
      Lee, C.T.A., Morton, D.M., Kistler, R.W., et al., 2007.Petrology and Tectonics of Phanerozoic Continent Formation:From Island Arcs to Accretion and Continental Arc Magmatism.Earth and Planetary Science Letters, 263(3-4):370-387. https://doi.org/10.1016/j.epsl.2007.09.025
      Niu, Y.L., Zhao, Z.D., Zhu, D.C., et al., 2013.Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis.Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      Peacock, S.M., 1993.The Importance of Blueschist-Eclogite Dehydration Reactions in Subducting Oceanic Crust.Geological Society of America Bulletin, 105(5):684-694. doi: 10.1130/0016-7606(1993)105<0684:TIOBED>2.3.CO;2
      Reubi, O., Blundy, J., 2009.A Dearth of Intermediate Melts at Subduction Zone Volcanoes and the Petrogenesis of Arc Andesites.Nature, 461:1269-1273. https://doi.org/10.1038/nature08510
      Rudnick, R.L., Gao, S., 2014.Composition of the Continental Crust.Treatise on Geochemistry.4:1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      Rumble, D., Liou, J.G., Jahn, B.M., 2003.Continental Crust Subduction and Ultrahigh Pressure Metamorphism.Treatise on Geochemistry.3:293-319. https://doi.org/10.1016/b0-08-043751-6/03158-3
      Straub, S.M., Zellmer, G.F., Gómez-Tuena, A., et al., 2014.A Genetic Link between Silicic Slab Components and Calc-Alkaline Arc Volcanism in Central Mexico.Geological Society, London, Special Publications, 385(1):31-64. https://doi.org/10.1144/sp385.14
      Tatsumi, Y., Eggins, S., 1995.Subduction Zone Magmatism.Blackwell Science, Oxford, 211.
      Valley, J.W., Kinny, P.D., Schulze, D.J., et al., 1998.Zircon Megacrysts from Kimberlite:Oxygen Isotope Variability among Mantle Melts.Contributions to Mineralogy and Petrology, 133(1-2):1-11. https://doi.org/10.1007/s004100050432
      Wang, Y., Zhao, Z.F., Zheng, Y.F., et al., 2011.Geochemical Constraints on the Nature of Mantle Source for Cenozoic Continental Basalts in East-Central China.Lithos, 125(3-4):940-955. doi: 10.1016/j.lithos.2011.05.007
      Xu, S.T., Su, W., Liu., Y.C., et al., 1992.Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting.Science, 256(5053):80-82. https://doi.org/10.1126/science.256.5053.80
      Xu, Z., Zhao, Z.F., Zheng, Y.F., 2012.Slab-Mantle Interaction for Thinning of Cratonic Lithospheric Mantle in North China:Geochemical Evidence from Cenozoic Continental Basalts in Central Shandong.Lithos, 146-147:202-217. https://doi.org/10.1016/j.lithos.2012.05.019
      Xu, Z., Zheng, Y.F., 2017.Continental Basalts Record the Crust-Mantle Interaction in Oceanic Subduction Channel:A Geochemical Case Study from Eastern China.Journal of Asian Earth Sciences, 145:233-259. https://doi.org/10.1016/j.jseaes.2017.03.010
      Yang, Q.L., Zhao, Z.F., Zheng, Y.F., 2012a.Modification of Subcontinental Lithospheric Mantle above Continental Subduction Zone:Constraints from Geochemistry of Mesozoic Gabbroic Rocks in Southeastern North China.Lithos, 146-147:164-182. https://doi.org/10.1016/j.lithos.2012.05.005
      Yang, Q.L., Zhao, Z.F., Zheng, Y.F., 2012b.Slab-Mantle Interaction in Continental Subduction Channel:Geochemical Evidence from Mesozoic Gabbroic Intrusives in Southeastern North China.Lithos, 155:442-460. https://doi.org/10.1016/j.lithos.2012.10.003
      Zhang, J., Zhao, Z.F., Zheng, Y.F., et al., 2010.Postcollisional Magmatism:Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China.Lithos, 119(3):512-536. https://doi.org/10.1016/j.lithos.2010.08.005.
      Zhang, J., Zhao, Z.F., Zheng, Y.F., et al., 2012.Zircon Hf-O Isotope and Whole-Rock Geochemical Constraints on Origin of Postcollisional Mafic to Felsic Dykes in the Sulu Orogen.Lithos, 136-139:225-245. https://doi.org/10.1016/j.lithos.2011.06.006
      Zhang, J.J., Zheng, Y.F., Zhao, Z.F., 2009.Geochemical Evidence for Interaction between Oceanic Crust and Lithospheric Mantle in the Origin of Cenozoic Continental Basalts in East-Central China.Lithos, 110(1-4):305-326. https://doi.org/10.1016/j.lithos.2009.01.006
      Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2013.Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction.Scientific Reports, 3:3413. https://doi.org/10.1038/srep03413
      Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2015.Two Types of the Crust-Mantle Interaction in Continental Subduction Zones.Science China:Earth Sciences, 45(7):900-915(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JDXG201508004.htm
      Zhao, Z.F., Liu, Z.B., Chen, Q., 2017b.Melting of Subducted Continental Crust:Geochemical Evidence from Mesozoic Granitoids in the Dabie-Sulu Orogenic Belt, East-Central China.Journal of Asian Earth Sciences, 145:260-277. https://doi.org/10.1016/j.jseaes.2017.03.038
      Zhao, Z.F., Zheng, Y.F., 2009.Remelting of Subducted Continental Lithosphere:Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt.Science in China:Earth Science, 52(9):1295-1318. https://doi.org/10.1007/s11430-009-0134-8
      Zhao, Z.F., Zheng, Y.F., Chen, Y.X., et al., 2017a.Partial Melting of Subducted Continental Crust:Geochemical Evidence from Synexhumation Granite in the Sulu Orogen.GSA Bulletin, 129(11-12):1692-1707. https://doi.org/10.1130/b31675.1
      Zhao, Z.F., Zheng, Y.F., Zhang, J., et al., 2012.Syn-Exhumation Magmatism during Continental Collision:Evidence from Alkaline Intrusives of Triassic Age in the Sulu Oroge.Chemical Geology, 328:70-88. https://doi.org/10.1016/j.chemgeo.2011.11.002
      Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
      Zheng, Y.F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10:1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003
      Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016.The Transport of Water in Subduction Zones.Science China:Earth Sciences, 59(4):651-682. https://doi.org/10.1007/s11430-015-5258-4
      Zheng, Y.F., Chen, R.X., Zhao, Z.F., 2009.Chemical Geodynamics of Continental Subduction-Zone Metamorphism:Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples.Tectonophysics, 475(2):327-358. https://doi.org/10.1016/j.tecto.2008.09.014
      Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3:495-519. https://doi.org/10.1093/nsr/nww049
      Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015.Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens.Science China:Earth Sciences, 58(7):1045-1069. https://doi.org/10.1007/s11430-015-5097-3
      Zheng, Y.F., Fu, B., Gong, B., et al., 2003.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China:Implications for Geodynamics and Fluid Regime.Earth-Science Reviews, 62(1-2):105-161. https://doi.org/10.1016/s0012-8252(02)00133-2
      Zheng, Y.F., Hermann, J., 2014.Geochemistry of Continental Subduction-Zone Fluids.Earth, Planets and Space, 66(1):93. https://doi.org/10.1186/1880-5981-66-93
      Zheng, Y.F., Xia, Q.X., Chen, R.X., et al., 2011.Partial Melting, Fluid Supercriticality and Element Mobility in Ultrahigh-Pressure Metamorphic Rocks during Continental Collision.Earth-Science Reviews, 107(3-4):342-374. https://doi.org/10.1016/j.earscirev.2011.04.004
      Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018.Mesozoic Mafic Magmatism in North China:Implications for Thinning and Destruction of Cratonic Lithosphere.Science China:Earth Sciences, 61(4):353-385. https://doi.org/10.1007/s11430-017-9160-3
      Zheng, Y.F., Zhao, Z.F., 2017.Introduction to the Structures and Processes of Subduction Zones.Journal of Asian Earth Sciences, 145:1-15. https://doi.org/10.1016/j.jseaes.2017.06.034
      Zheng, Y.F., Zhao, Z.F., Chen, R.X., 2019.Ultrahigh-Pressure Metamorphic Rocks in the Dabie-Sulu Orogenic Belt:Compositional Inheritance and Metamorphic Modification.Geological Society, London, Special Publications, 474(1):89-132. doi: 10.1144/SP474.9
      Zindler, A., Hart, S., 1986.Chemical Geodynamics.Annual Review of Earth and Planetary Sciences, 14:493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
      赵子福, 戴立群, 郑永飞, 2015.大陆俯冲带两类壳幔相互作用.中国科学:地球科学, 45(7):900-915. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201507002
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)

      Article views (5035) PDF downloads(174) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return