Citation: | Liu Bingchen, Qi Yong'an, Dai Mingyue, Bai Wanbei, Fan Yuchao, Qing Guoshuai, 2021. Benthic Ecosystem Engineer after the Cambrian Explosion: An Example from Henan Province. Earth Science, 46(1): 148-161. doi: 10.3799/dqkx.2019.245 |
Aller, R. C., 1982. The Effects of Macro Benthos on Chemical Properties of Marine Sediment and Overlying Water. In: McCall, P. L., Tevesz, M. J. S., eds., Animal-Sediment Relations. Journal of Geobiology, New York, 53-102.
|
Allison, P. A., Wright, V. P., 2005. Switching off the Carbonate Factory: A-Tidality, Stratification and Brackish Wedges in Epeiric Seas. Sedimentary Geology, 179(3/4): 175-184. https://doi.org/10.1016/j.sedgeo.2005.05.004
|
Ausich, W. I., Bottjer, D. J., 1982. Tiering in Suspension-Feeding Communities on Soft Substrata Throughout the Phanerozoic. Science, 216(4542): 173-174. https://doi.org/10.1126/science.216.4542.173
|
Bai, W.B., Qi, Y.A., Guo, Y.H., et al., 2018. Storm Deposits and Relevant Trace Fossils from the Cambrian Series 2 Xinji Formation in Lushan Area, Henan Province. Journal of Palaeogeography, 20(3): 365-376(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201803002.htm
|
Bottjer, D. J., Ausich, W. I., 1986. Phanerozoic Development of Tiering in Soft Substrata Suspension-Feeding Communities. Paleobiology, 12(4): 400-420. https://doi.org/10.1017/s0094837300003134
|
Buatois, L. A., Mángano, M. G., 2012. An Early Cambrian Shallow-Marine Ichnofauna from the Puncoviscana Formation of Northwest Argentina: The Interplay between Sophisticated Feeding Behaviors, Matgrounds and Sea-Level Changes. Journal of Paleontology, 86(1): 7-18. https://doi.org/10.1666/11-001.1
|
Buatois, L. A., Narbonne, G. M., Mángano, M. G., et al., 2014. Ediacaran Matground Ecology Persisted into the Earliest Cambrian. Nature Communications, 5(1): 35-44. https://doi.org/10.1038/ncomms4544
|
Bush, A. M., Bambach, R. K., Daley, G. M., 2007. Changes in Theoretical Ecospace Utilization in Marine Fossil Assemblages between the Mid-Paleozoic and Late Cenozoic. Paleobiology, 33(1): 76-97. https://doi.org/10.1666/06013.1
|
Chen, X., Ling, H. F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6(1): 8142. https://doi.org/10.1038/ncomms8142
|
Chen, Z., Chen, X., Zhou, C. M., et al., 2018. Late Ediacaran Trackways Produced by Bilaterian Animals with Paired Appendages. Science Advances, 4(6): 6691. https://doi.org/10.1126/sciadv.aao6691
|
Collette, J. H., Hagadorn, J. W., 2010. Early Evolution of Phyllocarid Arthropods: Phylogeny and Systematics of Cambrian-Devonian Archaeostracans. Journal of Paleontology, 84(5): 795-820. https://doi.org/10.1666/09-092.1
|
Dornbos, S. Q., 2006. Evolutionary Palaeoecology of Early Epifaunal Echinoderms: Response to Increasing Bioturbation Levels during the Cambrian Radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 237(2/3/4): 225-239. https://doi.org/10.1016/j.palaeo.2005.11.021
|
Fang, L., Liu, J.B., Zhan, R.B., 2012. Temporal Distribution of Piperocks in Cambrian and Ordovician: A Coevolutionary Process with Changes of Paleoenvironment. Scientia Sinica Terrae, 42(1): 117-129 (in Chinese with English abstract). doi: 10.1360/zd-2012-42-1-117
|
François, F., Gerino, M., Stora, G., et al., 2002. Functional Approach to Sediment Reworking by Gallery-Forming Macrobenthic Organisms: Modeling and Application with the Polychaete Nereis Diversicolor. Marine Ecology Progress Series, 229: 127-136. https://doi.org/10.3354/meps229127
|
Herringshaw, L. G., Callow, R. H. T., McIlroy, D., 2017. Engineering the Cambrian Explosion: The Earliest Bioturbators as Ecosystem Engineers. Geological Society, London, Special Publications, 448(1): 369-382. https://doi.org/10.1144/sp448.18
|
Herringshaw, L. G., McIlroy, D., 2013. Bioinfiltration: Irrigation-Driven Transport of Clay Particles through Bioturbated Sediments. Journal of Sedimentary Research, 83(6): 443-450. https://doi.org/10.2110/jsr.2013.40
|
Kristensen, E., Kostka, J. E., 2005. Macro Faunal Burrows and Irrigation in Marine Sediment: Microbiological and Biogeochemical Interactions. In: Kristensen, E., Haese, R., Kostka, J. E., eds., Interactions Between Macro- and Micro-Organisms in Marine Sediments. Coastal and Estuarine Studies, Washington, 125-157.
|
Li, D., Qi, Y., Dai, M.Y., et al., 2016. Firm-ground Trace Fossils in the Mantou Formation(Cambrian Series 2 and 3), Western Henan, Central China. Acta Palaeontologica Sinica, 55(2): 170-180 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX201602004.htm
|
Mángano, M. G., Buatois, L. A., 2014. Decoupling of Body-Plan Diversification and Ecological Structuring during the Ediacaran-Cambrian Transition: Evolutionary and Geobiological Feedbacks. Proceedings of the Royal Society B: Biological Sciences, 281(1780): 20140038. https://doi.org/10.1098/rspb.2014.0038
|
McIlroy, D., Garton, M., 2010. Realistic Interpretation of Ichnofabrics and Palaeoecology of the Pipe-Rock Biotope. Lethaia, 43(3):420-426. https://doi.org/10.1111/j.1502-3931.2009.00199.x
|
Mermillod-Blondin, F., Rosenberg, R., 2006. Ecosystem Engineering: The Impact of Bioturbation on Biogeochemical Processes in Marine and Freshwater Benthic Habitats. Aquatic Sciences, 68(4): 434-442. https://doi.org/10.1007/s00027-006-0858-x
|
Meyer, M., Xiao, S. H., Gill, B. C., et al., 2014. Interactions between Ediacaran Animals and Microbial Mats: Insights from Lamonte Trevallis, a New Trace Fossil from the Dengying Formation of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 62-74. https://doi.org/10.1016/j.palaeo.2013.12.026
|
Minter, N. J., Buatois, L. A., Mángano, M. G., 2016.The Conceptual and Methodological Tools of Ichnology. In: Mángano, M. G., Buatois L A., eds., The Trace-Fossil Record of Major Evolutionary Events. Dordrecht: Springer Science, Business Media, 1-26.
|
Muscente, A. D., Boag, T. H., Bykova, N., et al., 2018. Environmental Disturbance, Resource Availability, and Biologic Turnover at the Dawn of Animal Life. Earth-Science Reviews, 177: 248-264. https://doi.org/10.1016/j.earscirev.2017.11.019
|
Qi, Y.A., Wang, M., Li, D., et al., 2012a. Cambrian Substrate Revolution: From Matgrounds to Bioturbated Mixgrounds. Journal of Henan Polytechnic University, , 31(2): 159-164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGXB201202009.htm
|
Qi, Y.A., Meng, Y., Dai, M.Y., et al., 2014. Biogenic Leopard Patch Structures from the Zhushadong Formation (Cambrian Series 2), Dengfeng Area, Western Henan. Geological Science and Technology Information, 33(5): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201405001.htm
|
Qi, Y.A., Li, D., Dai, M.Y., et al., 2013. Opportunistic Trace Fossils from the Changhia Formation (Third Series, Cambrian), Western Henan. Acta Palaeontologica Sinica, 52(1): 80-85 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GSWX201301008.htm
|
Qi, Y.A., Wang, M., Li, D., et al., 2012b. Ichnofabrics and Their Sedimentary Environments from the Lower Part of the Middle Cambrian Zhangxia Formation, Longmen Area, Luoyang City. Earth Science, 37(4): 693-706 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201204009.htm
|
Seilacher, A., 1999. Biomat-Related Lifestyles in the Precambrian. Palaios, 14(1):86. https://doi.org/10.2307/3515363
|
Tarhan, L. G., Droser, M. L., Planavsky, N. J., et al., 2015. Protracted Development of Bioturbation through the Early Palaeozoic Era. Nature Geoscience, 8(11): 865-869. https://doi.org/10.1038/ngeo2537
|
Tyson, R. V., Pearson, T. H., 1991. Modern and Ancient Continental Shelf Anoxia: An Overview. Geological Society, London, Special Publications, 58(1): 1-24. https://doi.org/10.1144/gsl.sp.1991.058.01.01
|
Vannier, J., Calandra, I., Gaillard, C., et al., 2010. Priapulid Worms: Pioneer Horizontal Burrowers at the Precambrian-Cambrian Boundary. Geology, 38(8): 711-714. https://doi.org/10.1130/g30829.1
|
Vannier, J., Steiner, M., Renvoisé, E., et al., 2007. Early Cambrian Origin of Modern Food Webs: Evidence from Predator Arrow Worms. Proceedings of the Royal Society B: Biological Sciences, 274(1610): 627-633. https://doi.org/10.1098/rspb.2006.3761
|
Williams, M., Vandenbroucke, T. R. A., Perrier, V., et al., 2015. A Link in the Chain of the Cambrian Zooplankton: Bradoriid Arthropods Invade the Water Column. Geological Magazine, 152(5): 923-934. https://doi.org/10.1017/s0016756815000059
|
Yang, S.P., Chen, Z.J, 1996. Middle Cambrian Hsvchuangian Trace Fossils from Dengfeng, Henan Province, and Their Environmental Significance. Regional Geology of China, (2): 143-149, T002 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD602.006.htm
|
Yang, W.T., Li, K.N., Wang, M., et al., 2017. Schaubcylindrichnus Heberti from the Zhangxia Formation (Cambrian Series 3) in Henan Province and Its Ethological Characteristics. Acta Palaeontologica Sinica, 56(3): 312-321 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX201703005.htm
|
Zamora, S., Deline, B., Javier Álvaro, J., et al., 2017. The Cambrian Substrate Revolution and the Early Evolution of Attachment in Suspension-Feeding Echinoderms. Earth-Science Reviews, 171: 478-491. https://doi.org/10.1016/j.earscirev.2017.06.018
|
Zhang, L. J., Qi, Y. A., Buatois, L. A., et al., 2017. The Impact of Deep-Tier Burrow Systems in Sediment Mixing and Ecosystem Engineering in Early Cambrian Carbonate Settings. Scientific Reports, 7(1): 45773. https://doi.org/10.1038/srep45773
|
Zhao, X.K., Shi, X.Y., Wang, X.Q., et al., 2018. Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification. Earth Science, 43(11): 3873-3890 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201811006.htm
|
白万备, 齐永安, 郭英海, 等, 2018.河南鲁山寒武系第二统辛集组风暴沉积及其相关的遗迹化石.古地理学报, 20(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201803002.htm
|
房亮, 刘建波, 詹仁斌, 2012.寒武纪-奥陶纪管状岩的盛衰及其与环境演变的协同.中国科学(地球科学), 42(1): 117-129. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201201014.htm
|
李妲, 齐永安, 代明月, 等, 2016.豫西寒武系第二、三统馒头组固底控制的遗迹化石.古生物学报, 55(2): 170-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201602004.htm
|
齐永安, 李妲, 代明月, 等, 2013.豫西寒武系第三统张夏组鲕粒灰岩中机会生物留下的遗迹化石.古生物学报, 52(1): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201301008.htm
|
齐永安, 孟瑶, 代明月, 等, 2014.豫西登封地区寒武系第二统朱砂洞组生物成因的豹斑构造.地质科技情报, 33(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405001.htm
|
齐永安, 王敏, 李妲, 等, 2012a.寒武纪底质革命:从微生物席底到生物扰动混合底.河南理工大学学报(自然科学版), 31(2): 159-164. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201202009.htm
|
齐永安, 王敏, 李妲, 等, 2012b.洛阳龙门地区中寒武统张夏组下部遗迹组构及其沉积环境.地球科学, 37(4): 693-706. http://www.earth-science.net/article/id/2275
|
杨式溥, 陈战杰, 1996.河南登封中寒武世徐庄组遗迹化石及其沉积环境.中国区域地质, (2): 143-149, T002. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD602.006.htm
|
杨文涛, 李凯楠, 王敏, 等, 2017.豫西寒武系第三统张夏组Schaubc ylindrichnus heberti及其生态学特征.古生物学报, 56(3): 312-321. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201703005.htm
|
赵相宽, 史晓颖, 王新强, 等, 2018.寒武纪早期海洋阶段性氧化驱动早期后生动物多样化进程.地球科学, 43(11):3873-3890. doi: 10.3799/dqkx.2018.143
|