• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 1
    Jan.  2021
    Turn off MathJax
    Article Contents
    Wang Yuting, Li Junxia, Xue Xiaobin, Tian Xiaowei, Chi Xiucheng, 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320. doi: 10.3799/dqkx.2019.261
    Citation: Wang Yuting, Li Junxia, Xue Xiaobin, Tian Xiaowei, Chi Xiucheng, 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320. doi: 10.3799/dqkx.2019.261

    Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin

    doi: 10.3799/dqkx.2019.261
    • Received Date: 2019-10-22
    • Publish Date: 2021-01-15
    • Natural high iodine groundwater is widely distributed in China. In order to find out the similarities and differences of mechanism of iodine occurrence in groundwater,the Datong basin and the North China Plain (NCP) were selected as representative areas in this study.Groundwater sampling and the analysis of hydrochemistry and iodine species were performed to understand the groundwater environment and hydrochemical evolution.The results showed that total iodine concentration in groundwater from Datong basin was 2.86-1 286 μg/L,and that in NCP was 2.40-1 106 μg/L. Approximately 50.0% and 49.5% of groundwater iodine from Datong basin and North China Plain exceed the national standard of 100 μg/L(GB19380- 2016),respectively. At the Datong basin,the groundwater environment was characterized by organic matter-rich,alkaline,weak reducing and Na-HCO3 type water,which was formed by Quaternary fluvial and lacustrine deposits. Under this environment,the sediment iodine was prone to be released into groundwater in the form of iodide and further enrich in the discharge area along the groundwater flow direction.At the NCP,the six transgressions in the Quaternary leads to the alluvial-lacustrine and marine loose sediments rich in Na,Cl and I. At the coastal area,the alkaline and weak reducing conditions in combination with low hydraulic gradient were favorable for iodine release from aquifer matrix to groundwater.The main species of iodine in groundwater was also iodide.The differences between two areas was that high iodine groundwater at Datong basin was mainly influenced by enriched organic matter in groundwater system,while that at NCP was mainly controlled by iodine-rich marine sediments.

       

    • loading
    • Burgi, H., 2010. Iodine Excess. Best Practice & Research Clinical Endocrinology & Metabolism, 24(1):107-115. https://doi.org/10.1016/j.beem.2009.08.010
      Cartwright, I., Weaver, T. R., Fifield, L. K., 2006. Cl/Br Ratios and Environmental Isotopes as Indicators of Recharge Variability and Groundwater Flow:An Example from the Southeast Murray Basin, Australia. Chemical Geology, 231(1-2):38-56. https://doi.org/10.1016/j.chemgeo.2005.12.009
      Cheng, S. P., Li, C. Y., Yang, G. Z., et al., 2004. Distinction Between Late Quaternary Fluvial Incision Induced by Faulting and by Climate:A Case Study of the Sanggan River. Seismology and Geology, 26(2):169-188(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200402000.htm
      Guo, H. M., Wang, Y. X., 2005. Geochemical Characteristics of Shallow Groundwater in Datong Basin, Northwestern China. Journal of Geochemical Exploration, 87(3):109-120. https://doi.org/10.1016/j.gexplo.2005.08.002
      Guo, X. W., Qin, Q. L., Chen, Z. P., 2007a. Iodine Nutrition Status of Population in the Areas with Different Iodine Concentrations of Drinking Water. Acta Nutrimenta Sinica, 29(6):526-534 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYXX200706004.htm
      Guo, X. W., Qin, Q. L., Liu, C. J., et al., 2007b. Study on Iodine Nutritional Status of Target Population due to Different Iodine Concentrations in Drinking Water after Stopped Iodized Salt. Journal of Hygiene Research, 36(4):427-431 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/17953207
      Han, Y., Zhang, H. M., Zhang, Y. F., et al., 2017. Distribution Regularity, Origin and Quality Division of High Arsenic, Fluorine and Iodine Contents in Groundwater in Datong Basin. Geological Survey of China, 4(1):57-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDC201701009.htm
      Jia, Q. Z., Zhang, X. D., 2017. An Interpretation of the Newly Revised Standard on "Definition and Demarcation of Water-Borne Iodine-Excess Areas and Iodine-Excess Endemic Areas". Chinese Journal of Endemiology, 36(3):226-229 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-journal-endemiology_thesis/0201231293108.html
      Li, J. X., Wang, Y. X., Guo, W., et al., 2013. Factors Controlling Spatial Variation of Iodine Species in Groundwater of the Datong Basin, Northern China. Procedia Earth and Planetary Science, 7:483-486. https://doi.org/10.1016/j.proeps.2013.03.054
      Li, J. X., Wang, Y. X., Guo, W., et al., 2014. Iodine Mobilization in Groundwater System at Datong Basin, China:Evidence from Hydrochemistry and Fluorescence Characteristics. Science of The Total Environment, 468-469:738-745. https://doi.org/10.1016/j.scitotenv.2013.08.092
      Li, J. X., Wang, Y. X., Xie, X. J., 2016. Cl/Br Ratios and Chlorine Isotope Evidences for Groundwater Salinization and its Impact on Groundwater Arsenic, Fluoride and Iodine Enrichment in the Datong Basin, China. Science of The Total Environment, 544:158-167. https://doi.org/10.1016/j.scitotenv.2015.08.144
      Li, J. X., Zhou, H. L., Qian, K., et al., 2017. Fluoride and Iodine Enrichment in Groundwater of North China Plain:Evidences from Speciation Analysis and Geochemical Modeling. Science of The Total Environment, 598:239-248. https://doi.org/10.1016/j.scitotenv.2017.04.158
      Liu, P., Liu, L. X., Shen, H. M., et al., 2014. The Standard, Intervention Measures and Health Risk for High Water Iodine Areas. PLoS ONE, 9(2):e89608. https://doi.org/10.1371/journal.pone.0089608
      Niu, X. G., Wang, Y. X., 1991. Genetic Analysis of Shallow High Iodine Groundwater in the Eastern Plain of Handan. Groundwater, (2):108-110 (in Chinese with English abstract). http://www.researchgate.net/publication/285784147_Formation_and_origin_of_high_iodine_groundwater_in_the_shallow_aquifers_of_the_eastern_Handan_Plain
      Qian, K., Li, J. X., Xie, X. J., et al., 2017. Organic and Inorganic Colloids Impacting Total Iodine Behavior in Groundwater from the Datong Basin, China. Science of The Total Environment, 601-602:380-390. https://doi.org/10.1016/j.scitotenv.2017.05.127
      Robinove, C. J., Langford, R. H., Brookhart, J.W., 1958. Saline-Water Resourcesof North Dakota. U. S. Government Printing Office, Washington, D.C. 1428. https://doi.org/ 10.3133/wsp1428
      Shen, H. M., 2015. Progress and Prospect of Iodine Deficiency Disease Prevention and Control in 20 Years of Popularizing Salt Iodization in China. Chinese Journal of Endemiology, 34(9):628-631 (in Chinese with English abstract).
      Shen, H. M., Zhang, S. B., Liu, S. J., et al., 2007. Study on the Geographic Distribution of National High Water Iodine Areas and the Contours of Water Iodine in High Iodine Areas. Chinese Journal of Endemiology, 26(6):658-661 (in Chinese with English abstract). http://www.researchgate.net/publication/285798967_Study_on_the_geographic_distribution_of_national_high_water_iodine_areas_and_the_contours_of_water_iodine_in_high_iodine_areas
      Sheppard, M. I., Thibault, D. H., 1992. Chemical Behaviour of Iodine in Organic and Mineral Soils. Applied Geochemistry, 7(3):265-272. https://doi.org/10.1016/0883-2927(92)90042-2
      Su, C. L., Wang, Y. X., 2008. A Study of Zonalityof Hydrochemistry of Groundwater in Unconsolidated Sediments in Datong Basin. Hydrogeology and Engineering Geology, 35(1):83-89. https://doi.org/10.3969/j.issn.1000-3665.2008.01.019
      Wang, P. H., Zhang, Q. L., Zhou, Y. L., et al., 2009. Investigation of Water-Borne Iodine-Excess Areas and Identification of Iodine-Excess Areas in Jiangsu Province. Chinese Journal of Endemiology, 28(6):697 (in Chinese with English abstract).
      Wu, F., Wang, Z. Q., Tong, X. J., et al., 2017. The Distribution Characteristics and Storage Environments of Rich Iodine in Shallow Groundwater of Typical Areas in China. Journal of Water Resources and Water Engineering, 28(2):99-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBSZ201702017.htm
      Xing, L. N., Guo, H. M., Wei, L., et al., 2012. Evolution Feature and Gensis of Fluoride Groundwater in Shallow Aquifer from North China Plain.Journal of Earch Sciences and Environment, 34(4):57-67 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-XAGX201204010.htm
      Xing, L. N., Guo, H. M., Zhan, Y. H., 2013. Groundwater Hydrochemical Characteristics and Processes along Flow Paths in the North China Plain. Journal of Asian Earth Sciences, 70-71:250-264. https://doi.org/10.1016/j.jseaes.2013.03.017
      Xu, F., Ma, T., Shi, L., et al., 2012. Hydrogeochemical Characteristics of High Iodine Groundwater in the Hetao Plain, Inner Mongolia. Hydrogeology and Engineering Geology, 39(5):8-15 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1878522013002646
      Xu, Q. Q., Lin, H. M., 1993. An Astroclimatological Explanation of Six Marine Transgressions in Eastern China Since Middle Pleistocene. Marine Geology & Quaternary Geology, 13(1):11-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ199301001.htm
      Xue, X. B., Li, J. X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain:Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3):910-921 (in Chinese with English abstract). http://www.researchgate.net/publication/325083892_Spatial_Distribution_and_Mobilization_of_Iodine_in_Groundwater_System_of_North_China_Plain_Taking_Hydrogeological_Section_from_Shijiazhuang_Hengshui_to_Cangzhou_as_an_Example
      Xue, X. B., Li, J. X., Xie, X. J., et al., 2019. Effects of Depositional Environment and Organic Matter Degradation on the Enrichment and Mobilization of Iodine in the Groundwater of the North China Plain. Science of The Total Environment, 686:50-62. https://doi.org/10.1016/j.scitotenv.2019.05.391
      Yang, J. C., 1961. Geomorphology and Quaternary Geology in the Eastern Datong Basin. Acta ScientiarumNaturalium Universitatis Pekinensis, (1):87-100 (in Chinese with English abstract). http://www.researchgate.net/publication/285162757_Quaternary_geology_and_geomorphology_of_Eastern_Datong_basin
      Zeng, Z. H., 1999. The Formation of Iand Its Control Factors. Jilin Geology, 18(2):30-33 (in Chinese with English abstract). http://www.researchgate.net/publication/285871966_The_formation_of_I_and_its_control_factors
      Zhang, C. S., Zhang, Y. C., Hu, J. J., 1995. Evolution of Geological Environment in North Huabei Plain in Historic Times. Journal of Geological Hazards and Environment Preservation, 6(2):12-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZHB502.001.htm
      Zhang, Z. H., Shen, Z. L., Xue, Y. Q., et al., 2000. The Environment Evolution of Groundwater in the North China Plain. Geological Publishing House, Beijing (in Chinese with English abstract).
      Zhang, Z. J., Fei, Y. H., 2009. Atlas of Groundwater Sustainable Utilization in North China Plain. China Cartographic Publishing House, Beijing (in Chinese with English abstract).
      Zhou, H. L., Su, C. L., Li, J. X., et al., 2017. Characteristics of Rare Earth Elements in the Sediments of the Datong Basin and Its Indication to the Iodine Enrichment. Earth Science, 42(2):298-306 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201702011.htm
      程绍平, 李传友, 杨桂枝, 等, 2004.区分晚第四纪断层作用驱动的和气候引起的流水下切-以桑干河大同盆地河段为例.地震地质, 26(2):169-188. doi: 10.3969/j.issn.0253-4967.2004.02.001
      郭晓尉, 秦启亮, 陈祖培, 2007a.不同地区饮用水碘水平居民碘营养状况调查研究.营养学报, 29(6):526-534. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXX200706004.htm
      郭晓尉, 秦启亮, 刘传蛟, 等.2007b.不同水碘地区重点人群碘营养水平及其干预效果研究.卫生研究, 36(4):427-431. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ200704009.htm
      韩颖, 张宏民, 张永峰, 等, 2017.大同盆地地下水高砷、氟、碘分布规律与成因分析及质量区划.中国地质调查, 4(1):57-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201701009.htm
      贾清珍, 张向东, 2017.对新修订的《水源性高碘地区和高碘病区的划定》标准的解读.中华地方病学杂志, 36(3):226-229. doi: 10.3760/cma.j.issn.2095-4255.2017.03.017
      牛喜贵, 王荫兴, 1991.邯郸东部平原浅层高碘地下水成因分析.地下水, (2):108-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU199102014.htm
      申红梅, 2015.中国普及食盐加碘20年后碘缺乏病防治历程及展望.中华地方病学杂志, 34(9):628-631.
      申红梅, 张树彬, 刘守军, 等, 2007.全国高水碘地区地理分布及高碘地区水碘等值线研究.中华地方病学杂志, 26(6):658-661. doi: 10.3760/cma.j.issn.1000-4955.2007.06.021
      苏春利, 王焰新, 2008.大同盆地孔隙地下水化学场的分带规律性研究.水文地质工程地质, (1):83-89. doi: 10.3969/j.issn.1000-3665.2008.01.019
      王培桦, 张庆兰, 周永林, 等, 2009.江苏省水源性高碘地区调查和高碘病区确认.中华地方病学杂志, 28(6):697.
      吴飞, 王曾祺, 童秀娟, 等, 2017.我国典型地区浅层高碘地下水分布特征及其赋存环境.水资源与水工程学报, 28(2):99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201702017.htm
      邢丽娜, 郭华明, 魏亮, 等, 2012.华北平原浅层含氟地下水演化特点及成因.地球科学与环境学报, 34(4):57-67. doi: 10.3969/j.issn.1672-6561.2012.04.008
      徐芬, 马腾, 石柳, 等, 2012.内蒙古河套平原高碘地下水的水文地球化学特征.水文地质工程地质, 39(5):8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201205001.htm
      徐钦琦, 林和茂, 1993.中更新世以来中国东部六次海侵及其天文气候学的解释.海洋地质与第四纪地质, 13(1):11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199301001.htm
      薛肖斌, 李俊霞, 钱坤, 等, 2018.华北平原原生富碘地下水系统中碘的迁移富集规律:以石家庄-衡水-沧州剖面为例.地球科学, 43(3):910-921. doi: 10.3799/dqkx.2017.564
      杨景春, 1961.大同盆地东部地貌与第四纪地质.北京大学学报(自然科学), (1):87-100. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ196101010.htm
      曾昭华, 1999.地下水中碘的形成及其控制因素.吉林地质, 18(2):30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ902.004.htm
      张春山, 张业成, 胡景江, 1995.华北平原北部历史时期地质环境演化.地质灾害与环境保护, 6(2):12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB502.001.htm
      张宗祜, 沈照理, 薛禹群, 等, 2000.华北平原地下水环境演化.北京:地质出版社.
      张兆吉, 费宇红, 2009.华北平原地下水可持续利用图集.北京:中国地图出版社.
      周海玲, 苏春利, 李俊霞, 等, 2017.大同盆地沉积物REE分布特征及其对碘富集的指示.地球科学, 42(2):298-306. doi: 10.3799/dqkx.2017.022
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (2448) PDF downloads(74) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return