Citation: | Wang Yuting, Li Junxia, Xue Xiaobin, Tian Xiaowei, Chi Xiucheng, 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320. doi: 10.3799/dqkx.2019.261 |
Burgi, H., 2010. Iodine Excess. Best Practice & Research Clinical Endocrinology & Metabolism, 24(1):107-115. https://doi.org/10.1016/j.beem.2009.08.010
|
Cartwright, I., Weaver, T. R., Fifield, L. K., 2006. Cl/Br Ratios and Environmental Isotopes as Indicators of Recharge Variability and Groundwater Flow:An Example from the Southeast Murray Basin, Australia. Chemical Geology, 231(1-2):38-56. https://doi.org/10.1016/j.chemgeo.2005.12.009
|
Cheng, S. P., Li, C. Y., Yang, G. Z., et al., 2004. Distinction Between Late Quaternary Fluvial Incision Induced by Faulting and by Climate:A Case Study of the Sanggan River. Seismology and Geology, 26(2):169-188(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200402000.htm
|
Guo, H. M., Wang, Y. X., 2005. Geochemical Characteristics of Shallow Groundwater in Datong Basin, Northwestern China. Journal of Geochemical Exploration, 87(3):109-120. https://doi.org/10.1016/j.gexplo.2005.08.002
|
Guo, X. W., Qin, Q. L., Chen, Z. P., 2007a. Iodine Nutrition Status of Population in the Areas with Different Iodine Concentrations of Drinking Water. Acta Nutrimenta Sinica, 29(6):526-534 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYXX200706004.htm
|
Guo, X. W., Qin, Q. L., Liu, C. J., et al., 2007b. Study on Iodine Nutritional Status of Target Population due to Different Iodine Concentrations in Drinking Water after Stopped Iodized Salt. Journal of Hygiene Research, 36(4):427-431 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/17953207
|
Han, Y., Zhang, H. M., Zhang, Y. F., et al., 2017. Distribution Regularity, Origin and Quality Division of High Arsenic, Fluorine and Iodine Contents in Groundwater in Datong Basin. Geological Survey of China, 4(1):57-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDC201701009.htm
|
Jia, Q. Z., Zhang, X. D., 2017. An Interpretation of the Newly Revised Standard on "Definition and Demarcation of Water-Borne Iodine-Excess Areas and Iodine-Excess Endemic Areas". Chinese Journal of Endemiology, 36(3):226-229 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-journal-endemiology_thesis/0201231293108.html
|
Li, J. X., Wang, Y. X., Guo, W., et al., 2013. Factors Controlling Spatial Variation of Iodine Species in Groundwater of the Datong Basin, Northern China. Procedia Earth and Planetary Science, 7:483-486. https://doi.org/10.1016/j.proeps.2013.03.054
|
Li, J. X., Wang, Y. X., Guo, W., et al., 2014. Iodine Mobilization in Groundwater System at Datong Basin, China:Evidence from Hydrochemistry and Fluorescence Characteristics. Science of The Total Environment, 468-469:738-745. https://doi.org/10.1016/j.scitotenv.2013.08.092
|
Li, J. X., Wang, Y. X., Xie, X. J., 2016. Cl/Br Ratios and Chlorine Isotope Evidences for Groundwater Salinization and its Impact on Groundwater Arsenic, Fluoride and Iodine Enrichment in the Datong Basin, China. Science of The Total Environment, 544:158-167. https://doi.org/10.1016/j.scitotenv.2015.08.144
|
Li, J. X., Zhou, H. L., Qian, K., et al., 2017. Fluoride and Iodine Enrichment in Groundwater of North China Plain:Evidences from Speciation Analysis and Geochemical Modeling. Science of The Total Environment, 598:239-248. https://doi.org/10.1016/j.scitotenv.2017.04.158
|
Liu, P., Liu, L. X., Shen, H. M., et al., 2014. The Standard, Intervention Measures and Health Risk for High Water Iodine Areas. PLoS ONE, 9(2):e89608. https://doi.org/10.1371/journal.pone.0089608
|
Niu, X. G., Wang, Y. X., 1991. Genetic Analysis of Shallow High Iodine Groundwater in the Eastern Plain of Handan. Groundwater, (2):108-110 (in Chinese with English abstract). http://www.researchgate.net/publication/285784147_Formation_and_origin_of_high_iodine_groundwater_in_the_shallow_aquifers_of_the_eastern_Handan_Plain
|
Qian, K., Li, J. X., Xie, X. J., et al., 2017. Organic and Inorganic Colloids Impacting Total Iodine Behavior in Groundwater from the Datong Basin, China. Science of The Total Environment, 601-602:380-390. https://doi.org/10.1016/j.scitotenv.2017.05.127
|
Robinove, C. J., Langford, R. H., Brookhart, J.W., 1958. Saline-Water Resourcesof North Dakota. U. S. Government Printing Office, Washington, D.C. 1428. https://doi.org/ 10.3133/wsp1428
|
Shen, H. M., 2015. Progress and Prospect of Iodine Deficiency Disease Prevention and Control in 20 Years of Popularizing Salt Iodization in China. Chinese Journal of Endemiology, 34(9):628-631 (in Chinese with English abstract).
|
Shen, H. M., Zhang, S. B., Liu, S. J., et al., 2007. Study on the Geographic Distribution of National High Water Iodine Areas and the Contours of Water Iodine in High Iodine Areas. Chinese Journal of Endemiology, 26(6):658-661 (in Chinese with English abstract). http://www.researchgate.net/publication/285798967_Study_on_the_geographic_distribution_of_national_high_water_iodine_areas_and_the_contours_of_water_iodine_in_high_iodine_areas
|
Sheppard, M. I., Thibault, D. H., 1992. Chemical Behaviour of Iodine in Organic and Mineral Soils. Applied Geochemistry, 7(3):265-272. https://doi.org/10.1016/0883-2927(92)90042-2
|
Su, C. L., Wang, Y. X., 2008. A Study of Zonalityof Hydrochemistry of Groundwater in Unconsolidated Sediments in Datong Basin. Hydrogeology and Engineering Geology, 35(1):83-89. https://doi.org/10.3969/j.issn.1000-3665.2008.01.019
|
Wang, P. H., Zhang, Q. L., Zhou, Y. L., et al., 2009. Investigation of Water-Borne Iodine-Excess Areas and Identification of Iodine-Excess Areas in Jiangsu Province. Chinese Journal of Endemiology, 28(6):697 (in Chinese with English abstract).
|
Wu, F., Wang, Z. Q., Tong, X. J., et al., 2017. The Distribution Characteristics and Storage Environments of Rich Iodine in Shallow Groundwater of Typical Areas in China. Journal of Water Resources and Water Engineering, 28(2):99-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBSZ201702017.htm
|
Xing, L. N., Guo, H. M., Wei, L., et al., 2012. Evolution Feature and Gensis of Fluoride Groundwater in Shallow Aquifer from North China Plain.Journal of Earch Sciences and Environment, 34(4):57-67 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-XAGX201204010.htm
|
Xing, L. N., Guo, H. M., Zhan, Y. H., 2013. Groundwater Hydrochemical Characteristics and Processes along Flow Paths in the North China Plain. Journal of Asian Earth Sciences, 70-71:250-264. https://doi.org/10.1016/j.jseaes.2013.03.017
|
Xu, F., Ma, T., Shi, L., et al., 2012. Hydrogeochemical Characteristics of High Iodine Groundwater in the Hetao Plain, Inner Mongolia. Hydrogeology and Engineering Geology, 39(5):8-15 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1878522013002646
|
Xu, Q. Q., Lin, H. M., 1993. An Astroclimatological Explanation of Six Marine Transgressions in Eastern China Since Middle Pleistocene. Marine Geology & Quaternary Geology, 13(1):11-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ199301001.htm
|
Xue, X. B., Li, J. X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain:Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3):910-921 (in Chinese with English abstract). http://www.researchgate.net/publication/325083892_Spatial_Distribution_and_Mobilization_of_Iodine_in_Groundwater_System_of_North_China_Plain_Taking_Hydrogeological_Section_from_Shijiazhuang_Hengshui_to_Cangzhou_as_an_Example
|
Xue, X. B., Li, J. X., Xie, X. J., et al., 2019. Effects of Depositional Environment and Organic Matter Degradation on the Enrichment and Mobilization of Iodine in the Groundwater of the North China Plain. Science of The Total Environment, 686:50-62. https://doi.org/10.1016/j.scitotenv.2019.05.391
|
Yang, J. C., 1961. Geomorphology and Quaternary Geology in the Eastern Datong Basin. Acta ScientiarumNaturalium Universitatis Pekinensis, (1):87-100 (in Chinese with English abstract). http://www.researchgate.net/publication/285162757_Quaternary_geology_and_geomorphology_of_Eastern_Datong_basin
|
Zeng, Z. H., 1999. The Formation of Iand Its Control Factors. Jilin Geology, 18(2):30-33 (in Chinese with English abstract). http://www.researchgate.net/publication/285871966_The_formation_of_I_and_its_control_factors
|
Zhang, C. S., Zhang, Y. C., Hu, J. J., 1995. Evolution of Geological Environment in North Huabei Plain in Historic Times. Journal of Geological Hazards and Environment Preservation, 6(2):12-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZHB502.001.htm
|
Zhang, Z. H., Shen, Z. L., Xue, Y. Q., et al., 2000. The Environment Evolution of Groundwater in the North China Plain. Geological Publishing House, Beijing (in Chinese with English abstract).
|
Zhang, Z. J., Fei, Y. H., 2009. Atlas of Groundwater Sustainable Utilization in North China Plain. China Cartographic Publishing House, Beijing (in Chinese with English abstract).
|
Zhou, H. L., Su, C. L., Li, J. X., et al., 2017. Characteristics of Rare Earth Elements in the Sediments of the Datong Basin and Its Indication to the Iodine Enrichment. Earth Science, 42(2):298-306 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201702011.htm
|
程绍平, 李传友, 杨桂枝, 等, 2004.区分晚第四纪断层作用驱动的和气候引起的流水下切-以桑干河大同盆地河段为例.地震地质, 26(2):169-188. doi: 10.3969/j.issn.0253-4967.2004.02.001
|
郭晓尉, 秦启亮, 陈祖培, 2007a.不同地区饮用水碘水平居民碘营养状况调查研究.营养学报, 29(6):526-534. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXX200706004.htm
|
郭晓尉, 秦启亮, 刘传蛟, 等.2007b.不同水碘地区重点人群碘营养水平及其干预效果研究.卫生研究, 36(4):427-431. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ200704009.htm
|
韩颖, 张宏民, 张永峰, 等, 2017.大同盆地地下水高砷、氟、碘分布规律与成因分析及质量区划.中国地质调查, 4(1):57-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201701009.htm
|
贾清珍, 张向东, 2017.对新修订的《水源性高碘地区和高碘病区的划定》标准的解读.中华地方病学杂志, 36(3):226-229. doi: 10.3760/cma.j.issn.2095-4255.2017.03.017
|
牛喜贵, 王荫兴, 1991.邯郸东部平原浅层高碘地下水成因分析.地下水, (2):108-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU199102014.htm
|
申红梅, 2015.中国普及食盐加碘20年后碘缺乏病防治历程及展望.中华地方病学杂志, 34(9):628-631.
|
申红梅, 张树彬, 刘守军, 等, 2007.全国高水碘地区地理分布及高碘地区水碘等值线研究.中华地方病学杂志, 26(6):658-661. doi: 10.3760/cma.j.issn.1000-4955.2007.06.021
|
苏春利, 王焰新, 2008.大同盆地孔隙地下水化学场的分带规律性研究.水文地质工程地质, (1):83-89. doi: 10.3969/j.issn.1000-3665.2008.01.019
|
王培桦, 张庆兰, 周永林, 等, 2009.江苏省水源性高碘地区调查和高碘病区确认.中华地方病学杂志, 28(6):697.
|
吴飞, 王曾祺, 童秀娟, 等, 2017.我国典型地区浅层高碘地下水分布特征及其赋存环境.水资源与水工程学报, 28(2):99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201702017.htm
|
邢丽娜, 郭华明, 魏亮, 等, 2012.华北平原浅层含氟地下水演化特点及成因.地球科学与环境学报, 34(4):57-67. doi: 10.3969/j.issn.1672-6561.2012.04.008
|
徐芬, 马腾, 石柳, 等, 2012.内蒙古河套平原高碘地下水的水文地球化学特征.水文地质工程地质, 39(5):8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201205001.htm
|
徐钦琦, 林和茂, 1993.中更新世以来中国东部六次海侵及其天文气候学的解释.海洋地质与第四纪地质, 13(1):11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199301001.htm
|
薛肖斌, 李俊霞, 钱坤, 等, 2018.华北平原原生富碘地下水系统中碘的迁移富集规律:以石家庄-衡水-沧州剖面为例.地球科学, 43(3):910-921. doi: 10.3799/dqkx.2017.564
|
杨景春, 1961.大同盆地东部地貌与第四纪地质.北京大学学报(自然科学), (1):87-100. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ196101010.htm
|
曾昭华, 1999.地下水中碘的形成及其控制因素.吉林地质, 18(2):30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ902.004.htm
|
张春山, 张业成, 胡景江, 1995.华北平原北部历史时期地质环境演化.地质灾害与环境保护, 6(2):12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB502.001.htm
|
张宗祜, 沈照理, 薛禹群, 等, 2000.华北平原地下水环境演化.北京:地质出版社.
|
张兆吉, 费宇红, 2009.华北平原地下水可持续利用图集.北京:中国地图出版社.
|
周海玲, 苏春利, 李俊霞, 等, 2017.大同盆地沉积物REE分布特征及其对碘富集的指示.地球科学, 42(2):298-306. doi: 10.3799/dqkx.2017.022
|