• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 12
    Dec.  2019
    Turn off MathJax
    Article Contents
    He Qiang, Zheng Yongfei, 2019. High-Temperature/Low-Pressure Metamorphism in a Continental Rift in the Northern Margin of the South China Block. Earth Science, 44(12): 4186-4194. doi: 10.3799/dqkx.2019.267
    Citation: He Qiang, Zheng Yongfei, 2019. High-Temperature/Low-Pressure Metamorphism in a Continental Rift in the Northern Margin of the South China Block. Earth Science, 44(12): 4186-4194. doi: 10.3799/dqkx.2019.267

    High-Temperature/Low-Pressure Metamorphism in a Continental Rift in the Northern Margin of the South China Block

    doi: 10.3799/dqkx.2019.267
    • Received Date: 2019-09-24
    • Publish Date: 2019-12-15
    • The formation of high-temperature (HT)/low-pressure (LP) metamorphic rocks requires high thermal gradients of > 30℃/km. It is intriguing which tectonic setting is responsible for such geological processes. This paper presents a summary of our petrological and geochemical studies on metagranite and metabasalt from the northern margin of the South China block, which were formed during breakup of Rodinia supercontinent in the middle Neoproterozoic. The results demonstrate that continental rifts are the most plausible setting for the production of HT/LP metamorphic rocks. The HT/LP metamorphism is mainly recorded in alumino silicates-bearing metagranites, in which metamorphic andalusite and sillimanite were produced by muscovite dehydration reaction. Metamorphic P-T conditions of 1.0-3.5 kbar and 560-660℃ were obtained from the petrology of aluminosilicates-bearing peak mineral assemblages in combination with pseudosection calculations. The metamorphic andalusite shows very negative δ18O values in O isotope disequilibrium with magmatic zircon, further demonstrating that it is the metamorphic product after magma crystallization. The U-Pb dating of metamorphic titanite yields concordant ages of 751±11 Ma for the HT/LP metamorphism, consistent with the peak age of the Rodinia breakup. The metabasalt shows island arc basalts-like trace element distribution patterns, indicating that its source was generated by metasomatic reaction of the mantle wedge peridotite with fluids derived from the subducting oceanic crust. Therefore, the mantle source was formed during the Grenvillian assembly of Rodinia supercontinent. In this regard, the continental rifting that resulted in the supercontinental breakup was developed in the former subduction zone. By comparing heat flow required to form the metamorphic peak mineral assemblages with that provided by heat producing elements in the metagranites, it appears that anomalously high heat flow was indeed delivered from the asthenospheric mantle to the continental rift, leading to the HT/LP metamorphism during the Rodinia breakup.

       

    • loading
    • Bosch, D., 2004.Deep and High⁃Temperature Hydrothermal Circulation in the Oman Ophiolite: Petrological and Isotopic Evidence.Journal of Petrology, 45(6): 1181-1208. https://doi.org/10.1093/petrology/egh010
      Brown, M., 1993.PTt Evolution of Orogenic Belts and the Causes of Regional Metamorphism.Journal of the Geological Society, 150(2): 227-241. https://doi.org/10.1144/gsjgs.150.2.0227
      Brown, M., 2006.Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean.Geology, 34(11): 961. https://doi.org/10.1130/g22853a.1
      Bucher, K., Grapes, R., 2011.Metamorphic Rocks.Petrogenesis of Metamorphic Rocks.Springer, Berlin Heidelberg, 21-56.
      Cawood, P.A., Kröner, A., Collins, W.J., et al., 2009.Accretionary Orogens through Earth History.Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1
      Clark, C., Fitzsimons, I.C.W., Healy, D., et al., 2011.How does the Continental Crust Get Really Hot? Elements, 7(4): 235-240. https://doi.org/10.2113/gselements.7.4.235
      Collins, W.J., 2002.Hot Orogens, Tectonic Switching, and Creation of Continental Crust.Geology, 30(6): 535. doi: 10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2
      de Yoreo, J.J., Lux, D.R., Guidotti, C.V., 1991.Thermal Modelling in Low⁃Pressure/High⁃Temperature Metamorphic Belts.Tectonophysics, 188(3-4): 209-238. https://doi.org/10.1016/0040⁃1951(91)90457⁃4
      Dewey, J.F., 1988.Extensional Collapse of Orogens.Tectonics, 7(6): 1123-1139. https://doi.org/10.1029/tc007i006p01123
      Ernst, W.G., Tsujimori, T., Zhang, R., et al., 2007.Permo⁃Triassic Collision, Subduction⁃Zone Metamorphism, and Tectonic Exhumation along the East Asian Continental Margin.Annual Review of Earth and Planetary Sciences, 35(1): 73-110. https://doi.org/10.1146/annurev.earth.35.031306.140146
      Essex, R.M., Gromet, L.P., 2000.U⁃Pb Dating of Prograde and Retrograde Titanite Growth during the Scandian Orogeny.Geology, 28(5): 419-422. doi: 10.1130/0091-7613(2000)28<419:UDOPAR>2.0.CO;2
      Hacker, B.R., Ratschbacher, L., Webb, L., et al., 1998.U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh⁃Pressure Qinling⁃Dabie Orogen, China.Earth and Planetary Science Letters, 161(1-4): 215-230. https://doi.org/10.1016/s0012⁃821x(98)00152⁃6
      He, Q., Zhang, S.B., Zheng, Y.F., 2016.High Temperature Glacial Meltwater⁃Rock Reaction in the Neoproterozoic: Evidence from Zircon In⁃Situ Oxygen Isotopes in Granitic Gneiss from the Sulu Orogen.Precambrian Research, 284: 1-13. https://doi.org/10.1016/j.precamres.2016.07.012
      He, Q., Zhang, S.B., Zheng, Y.F., 2018.Evidence for Regional Metamorphism in a Continental Rift during the Rodinia Breakup.Precambrian Research, 314: 414-427. https://doi.org/10.1016/j.precamres.2018.06.009
      Li, Z., 2003.Geochronology of Neoproterozoic Syn⁃Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia.Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/s0301⁃9268(02)00208⁃5
      Li, Z.X., Bogdanova, S., Collins, A., et al., 2008.Assembly, Configuration, and Break⁃up History of Rodinia: A Synthesis.Precambrian Research 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      Li, Z.X., Li, X.H., Zhou, H.W., et al., 2002.Grenvillian Continental Collision in South China: New SHRIMP U⁃Pb Zircon Results and Implications for the Configuration of Rodinia.Geology, 30(2): 163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
      Lux, D.R., de Yoreo, J.J., Guldotti, C.V., et al., 1986.Role of Plutonism in Low⁃Pressure Metamorphic Belt Formation.Nature, 323: 794-797. https://doi.org/10.1038/323794a0
      Manning, C.E., Weston, P.E., Mahon, K.I., 1996.Rapid High⁃Temperature Metamorphism of East Pacific Rise Gabbros from Hess Deep.Earth and Planetary Science Letters, 144(1-2): 123-132. https://doi.org/10.1016/0012⁃821x(96)00153⁃7
      McLaren, S., Sandiford, M., Hand, M., 1999.High Radiogenic Heat⁃Producing Granites and Metamorphism: An Example from the Western Mount Isa Inlier, Australia.Geology, 27(8): 679-682. doi: 10.1130/0091-7613(1999)027<0679:HRHPGA>2.3.CO;2
      Nicolas, A., 2003.High⁃Temperature Seawater Circulation Throughout Crust of Oceanic Ridges: A Model Derived from the Oman Ophiolites.Journal of Geophysical Research Atmospheres, 108(B8): 2371. https://doi.org/10.1029/2002jb002094
      Olsen, K.H., Morgan, P., 2006.Chapter 1 Introduction: Progress in Understanding Continental Rifts.Developments in Geotectonics, 25: 3-26. https://doi.org/10.1016/s0419⁃0254(06)80005⁃4
      Platt, J.P., England, P.C., 1994.Convective Removal of Lithosphere beneath Mountain Belts; Thermal and Mechanical Consequences.American Journal of Science, 294(3): 307-336. https://doi.org/10.2475/ajs.294.3.307
      Pownall, J.M., Hall, R., Armstrong, R.A., et al., 2014.Earth's Youngest Known Ultrahigh⁃Temperature Granulites Discovered on Seram, Eastern Indonesia.Geology, 42(4): 279-282. https://doi.org/10.1130/g35230.1
      Rasmussen, B., Fletcher, I.R., Muhling, J.R., 2013.Dating Deposition and Low⁃Grade Metamorphism by In Situ U⁃Pb Geochronology of Titanite in the Paleoproterozoic Timeball Hill Formation, Southern Africa.Chemical Geology, 351: 29-39. https://doi.org/10.1016/j.chemgeo.2013.04.015
      Sandiford, M., Powell, R., 1986.Deep Crustal Metamorphism during Continental Extension: Modern and Ancient Examples.Earth and Planetary Science Letters, 79(1-2): 151-158. https://doi.org/10.1016/0012⁃821x(86)90048⁃8
      Sengör, A.M.C., Burke, K., 1978.Relative Timing of Rifting and Volcanism on Earth and Its Tectonic Implications.Geophysical Research Letters, 5(6): 419-421. https://doi.org/10.1029/gl005i006p00419
      Sisson, T.W., Grove, T.L., 1993.Experimental Investigations of the Role of H2O in Calc⁃Alkaline Differentiation and Subduction Zone Magmatism.Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/bf00283225
      Sisson, V.B., Hollister, L.S., 1988.Low⁃Pressure Facies Series Metamorphism in an Accretionary Sedimentary Prism, Southern Alaska.Geology, 16(4): 358-361. doi: 10.1130/0091-7613(1988)016<0358:LPFSMI>2.3.CO;2
      Spear, F.S., Kohn, M.J., 1996.Trace Element Zoning in Garnet as a Monitor of Crustal Melting.Geology, 24(12): 1099-1102. doi: 10.1130/0091-7613(1996)024<1099:TEZIGA>2.3.CO;2
      Tang, J., Zheng, Y.F., Gong, B., et al., 2008.Extreme Oxygen Isotope Signature of Meteoric Water in Magmatic Zircon from Metagranite in the Sulu Orogen, China: Implications for Neoproterozoic Rift Magmatism.Geochimica et Cosmochimica Acta, 72(13): 3139-3169. https://doi.org/10.1016/j.gca.2008.04.017
      Vauchez, A., Barruol, G., Tommasi, A., 1997.Why do Continents Break⁃up Parallel to Ancient Orogenic Belts? Terra Nova, 9(2): 62-66. https://doi.org/10.1111/j.1365⁃3121.1997.tb00003.x
      Wickham, S.M., Oxburgh, E.R., 1985.Continental Rifts as a Setting for Regional Metamorphism.Nature, 318: 330-333. https://doi.org/10.1038/318330a0
      Wilson, J.T., 1966.Did the Atlantic Close and then Re⁃Open? Nature, 211: 676-681. https://doi.org/10.1038/211676a0
      Wu, Y.B., Zheng, Y.F., Tang, J., et al., 2007.Zircon U⁃Pb Dating of Water⁃Rock Interaction during Neoproterozoic Rift Magmatism in South China.Chemical Geology, 246(1-2): 65-86. https://doi.org/10.1016/j.chemgeo.2007.09.004
      Zheng, Y.F., Chen, R.X., 2017.Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins.Journal of Asian Earth Sciences, 145: 46-73. https://doi.org/10.1016/j.jseaes.2017.03.009
      Zheng, Y.F., Chen, R.X., Zhao, Z.F., 2009.Chemical Geodynamics of Continental Subduction⁃Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples.Tectonophysics, 475(2): 327-358. https://doi.org/10.1016/j.tecto.2008.09.014
      Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049
      Zheng, Y.F., Fu, B., 1998.Estimation of Oxygen Diffusivity from Anion Porosity in Minerals.Geochemical Journal, 32(2): 71-89. https://doi.org/10.2343/geochemj.32.71
      Zheng, Y.F., Wu, Y.B., Chen, F.K., et al., 2004.Zircon U⁃Pb and Oxygen Isotope Evidence for a Large⁃Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic.Geochimica et Cosmochimica Acta, 68(20): 4145-4165. https://doi.org/10.1016/j.gca.2004.01.007
      Zheng, Y.F., Wu, Y.B., Gong, B., et al., 2007.Tectonic Driving of Neoproterozoic Glaciations: Evidence from Extreme Oxygen Isotope Signature of Meteoric Water in Granite.Earth and Planetary Science Letters, 256(1-2): 196-210. https://doi.org/10.1016/j.epsl.2007.01.026
      Zheng, Y.F., Xiao, W.J., Zhao, G.C., 2013.Introduction to Tectonics of China.Gondwana Research, 23(4): 1189-1206. https://doi.org/10.1016/j.gr.2012.10.001
      Zheng, Y.F., Zhao, Z.F., 2017.Introduction to the Structures and Processes of Subduction Zones.Journal of Asian Earth Sciences, 145: 1-15. https://doi.org/10.1016/j.jseaes.2017.06.034
      Zheng, Y.F., Zhao, Z.F., Wu, Y.B., et al., 2006.Zircon U⁃Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh⁃Pressure Eclogite and Gneiss in the Dabie Orogen.Chemical Geology, 231(1-2): 135-158. https://doi.org/10.1016/j.chemgeo.2006.01.005
      Zheng, Y.F., Zhou, J.B., Wu, Y.B., et al., 2005.Low⁃Grade Metamorphic Rocks in the Dabie⁃Sulu Orogenic Belt: A Passive⁃Margin Accretionary Wedge Deformed during Continent Subduction.International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020⁃6814.47.8.851
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (4717) PDF downloads(115) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return