• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 6
    Jun.  2020
    Turn off MathJax
    Article Contents
    Zhao Meiling, Zhang Yiming, Zhang Zhiqi, Huang Xianyu, 2020. Comparison of Microbial Community in Topsoil among Different Habitats in Dajiuhu, Hubei Province: Evidence from Phospholipid Fatty Acids. Earth Science, 45(6): 1877-1886. doi: 10.3799/dqkx.2019.272
    Citation: Zhao Meiling, Zhang Yiming, Zhang Zhiqi, Huang Xianyu, 2020. Comparison of Microbial Community in Topsoil among Different Habitats in Dajiuhu, Hubei Province: Evidence from Phospholipid Fatty Acids. Earth Science, 45(6): 1877-1886. doi: 10.3799/dqkx.2019.272

    Comparison of Microbial Community in Topsoil among Different Habitats in Dajiuhu, Hubei Province: Evidence from Phospholipid Fatty Acids

    doi: 10.3799/dqkx.2019.272
    • Received Date: 2019-09-10
    • Publish Date: 2020-06-15
    • As an important component of microbial cell membrane,phospholipid fatty acid (PLFAs) can respond sensitively to environmental changes,PLFAs can be altered by microorganisms changing their cell membrane composition by changing their metabolic or nutrient pathways. The current researches on soil PLFAs mainly focus on how changes in seasons and vegetation community affect microbial community structure. It is still not clear how habitats mediate the structure of soil microbial community revealed by topsoil PLFAs. In this study,soil PLFAs compositions were investigated among different habitats (including Sphagnum peat,herb peat,degraded peat,hygrophyte-mesophyte meadow,mesophyte-xeric meadow,xeric meadow,and deciduous broad-leaved forest) in Dajiuhu,Shennongjia. The results show that totally 26 PLFAs with carbon numbers ranging from C14 to C19 are common in the topsoil of the seven habitats. The concentration of total PLFAs in peats is 3-8 times higher than that in meadows. Because of pH and SWC (soil water content) PLFAs also reveal that microbial community structures are different among habitats. The microbial abundance and microbial community structure are similar and different in topsoil under different habitats. The results in this study shed light to better understand the changes of microbial community structure in regional ecosystem,and to facilitate the study of microbe's role in carbon cycle,paleoecology.

       

    • loading
    • Andersen, R., Grasset, L., Thormann, M.N., et al., 2010.Changes in Microbial Community Structure and Function Following Sphagnum Peatland Restoration.Soil Biology and Biochemistry, 42(2):291-301. https://doi.org/10.1016/j.soilbio.2009.11.006
      Anderson, J.P.E., Domsch, K.H., 1973.Quantification of Bacterial and Fungal Contributions to Soil Respiration.Archives of Microbiology, 93:113-127. doi: 10.1007-BF00424942/
      Borga, P., Nilsson, M., Tunlid, A., 1994.Bacterial Communities in Peat in Relation to Botanical Composition as Revealed by Phospholipid Fatty Acid Analysis.Soil Biology and Biochemistry, 26(7):841-848. https://doi.org/10.1016/0038-0717(94)90300-x
      Börjesson, J., Menichetti, L., Thornton, B., et al., 2016.Seasonal Dynamics of the Soil Microbial Community:Assimilation of Old and Young Carbon Sources in a Long-Term Field Experiment as Revealed by Natural 13C Abundance.European Journal of Soil Science, 67:79-89. https://doi.org/10.1111/ejss.12309
      Ding, X., Chen, S., Zhang, B., et al., 2019.Warming Increases Microbial Residue Contribution to Soil Organic Carbon in an Alpine Meadow.Soil Biology and Biochemistry, 15:13-19. https://doi.org/10.1016/j.soilbio.2019.04.004
      Eberlein, C., Baumgarten, T., Starke, S., et al., 2018.Immediate Response Mechanisms of Gram-Negative Solvent-Tolerant Bacteria to Cope with Environmental Stress:Cis-Trans Isomerization of Unsaturated Fatty Acids and Outer Membrane Vesicle Secretion.Applied Microbiology and Biotechnology, 102:2583-2593. https://doi.org/10.1007/s00253-018-8832-9
      Fanina, N., Kardola, P., Farrellc, M., et al., 2019.The Ratio of Gram-Positive to Gram-Negative Bacterial PLFA Markers as an Indicator of Carbon Availability in Organic Soils.Soil Biology and Biochemistry, 128:111-114. https://doi.org/10.1016/j.soilbio.2018.10.010
      Findlay, R.H., King, G.M., Watling, L., 1989.Efficacy of Phospholipid Analysis Determining Microbial Biomass in Sediments.Applied and Environmental Microbiology, 55(11):2888-2893. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_203186
      Frostegård, A., Tunlid, A., Bååth, E., 1991.Microbial Biomass Measured as Total Lipid Phosphate in Soils of Different Organic Content.Journal of Microbiological Methods, 14(3):151-163. doi: 10.1016-0167-7012(91)90018-L/
      Hooper, D.U., Bignell, D.E., Brown, V.K., et al., 2000.Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems.Bioscience, 50(12):1049-1061. doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
      Huang, X., Wang, C., Xue, J., et al., 2010.Occurrence of Diploptene in Moss Species from the Dajiuhu Peatland in Southern China.Organic Geochemistry, 41:321-324. https://doi.org/10.1016/j.orggeochem.2009.09.008
      Huang, X.Y., Zhang, Z.Q., Wang, H.M., et al., 2017.Overview on Critical Zone Observatory at Dajiuhu Peatland, Shennongjia.Earth Science, 42(6):1026-1038(in Chinese with English abstract). https://doi.org/10.3799/dpkx.2017.081
      Jaatinen, K., Tuittila, E.S., Laine, J., et al., 2005.Methane-Oxidizing Bacteria in a Finnish Raised Mire Complex:Effects of Site Fertility and Drainage.Microbial Ecology, 50(3):429-439. https://doi.org/10.1007/s00248-005-0219-7
      Kourtev, P.S., Ehrenfeld, J.G., Häggblom, M.H., 2003.Experimental Analysis of the Effect of Exotic and Native Plant Species on the Structure and Function of Soil Microbial Communities.Soil Biology and Biochemistry, 35(7):895-905. https://doi.org/10.1016/S0038-0717(03)00120-2
      Lauber, C.L., Strickland, M.S., Bradford, M.A., et al., 2008.The Influence of Soil Properties on the Structure of Bacterial and Fungal Communities across Land-Use Types.Soil Biology and Biochemistry, 40(9):2407-2415. https://doi.org/10.1016/j.soilbio.2008.05.021
      Li, J.X., Li, J., Dang, H.S., et al., 2007.Vegetation and Conservation Strategy of Dajiuhu Wetland Park in Shennongjia Region.Journal of Wuhan Botanical Research, 25(6):605-611(in Chinese with English abstract). http://www.cabdirect.org/abstracts/20083053494.html
      Li, X.Y., Sun, J., Wang, H.H., et al., 2017.Changes in the Soil Microbial Phospholipid Fatty Acid Profile with Depth in Three Soil Types of Paddy Fields in China.Geoderma, 290:69-74. https://doi.org/10.1016/j.geoderma.2016.11.006
      Li, Y.Y., Ge, J.W., Peng, F.J., et al., 2017.Characteristics of Methane Flux and Their Effect Factor on Dajiuhu Peatland of Shennongjia.Earth Science, 42(5):832-842(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.071
      Liang, C., Schimel, J.P., Jastrow, J.D., 2017.The Importance of Anabolism in Microbial Control over Soil Carbon Storage.Nature Microbiology, 2:17105. https://doi.org/10.1038/nmicrobiol.2017.105
      Lipson, D.A., Schmidt, S.K., Monson, R.K., 2000.Carbon Availability and Temperature Control the Post-Snowmelt Decline of Microbial Biomass in an Alpine Soil.Soil Biology and Biochemistry, 32:441-448. https://doi.org/10.1016/s0038-0717(99)00068-1
      Liu, H.Y, Gu, Y.S., Lun, Z.J., et al., 2018.Phytolith-Inferred Transfer Function for Paleohydrological Reconstruction of Dajiuhu Peatland, Central China.The Holocene, 28:1623-1630. https://doi.org/10.1177/0959683618782590
      Luo, T., Lun, Z.J., Gu, Y.S., et al., 2015.Plant Community Survey and Ecological Protection of Dajiuhu Wetlands in Shengnongjia Area.Wetland Science, 13(2):153-160(in Chinese with English abstract).
      Miltner, A., Bombach, P., Schmidt-Brücken, B., et al., 2012.SOM Genesis:Microbial Biomass as a Significant Source.Biogeochemistry, 111(1-3):41-55. https://doi.org/10.1007/s10533-011-9658-z
      Miura, T., Makotoa, K., Niwab, S., et al., 2017.Comparison of Fatty Acid Methyl Ester Methods for Characterization of Microbial Communities in Forest and Arable Soil:Phospholipid Fraction (PLFA) versus Total Ester Linked Fatty Acids (EL-FAME).Pedobiologia Journal of Soil Ecology, 63:14-18. https://doi.org/10.1016/j.pedobi.2017.04.002
      Moore-Kucera, J., Dick, R.P., 2008.PLFA Profiling of Microbial Community Structure and Seasonal Shifts in Soils of a Douglas-Fir Chronosequence.Microbial Ecology, 55(3):500-511. https://doi.org/10.1007/s00248-007-9295-1
      Mutabaruka, R., Hairiah, K., Cadisch, G., 2007.Microbial Degradation of Hydrolysable and Condensed Tannin Polyphenol-Protein Complexes in Soils from Different Land-Use Histories.Soil Biology and Biochemistry, 39:1479-1492. https://doi.org/10.1016/j.soilbio.2006.12.036
      Olsson, S., Alström, S., 2000.Characterisation of Bacteria in Soils under Barley Monoculture and Crop Rotation.Soil Biology and Biochemistry, 32(10):1443-1451. https://doi.org/10.1016/s0038-0717(00)00062-6
      Qin, Y.M., Gong, J., Gu, Y.S., et al., 2018.Ecological Monitoring and Environmental Significance of Testate Amoebae in Subalpine Peatlands in West Hubei Province, China.Earth Science, 43(11):4036-4045(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.599
      Rousk, J., Brookes, P.C., Bååth, E., 2010a.Investigating the Mechanisms for the Opposing pH Relationships of Fungal and Bacterial Growth in Soil.Soil Biology and Biochemistry, 42:926-934. https://doi.org/10.1016/j.soilbio.2010.02.009
      Rousk, J., Brookes, P.C., Bååth, E., 2010b.The Microbial PLFA Composition as Affected by pH in an Arable Soil.Soil Biology and Biochemistry, 42:516-520. https://doi.org/10.1016/j.soilbio.2009.11.026
      Sundh, I., Borgå, P., Nilsson, M., et al., 1995.Estimation of Cell Numbers of Methanotrophic Bacteria in Boreal Peatlands Based on Analysis of Specific Phospholipid Fatty Acids.FEMS Microbiology Ecology, 18:103-112. https://doi.org/10.1016/0168-6496(95)00046-d
      Wagner, D., Eisenhauer, N., Cesarz, S., 2015.Plant Species Richness does not Attenuate Responses of Soil Microbial and Nematode Communities to a Flood Event.Soil Biology and Biochemistry, 89:135-149. https://doi.org/10.1016/j.soilbio.2015.07.001
      Wickland, K.P., Striegl, R.G., Mast, M.A., et al., 2001.Carbon Gas Exchange at a Southern Rocky Mountain Wetland, 1996-1998.Global Biogeochemical Cycle, 15:321-335. https://doi.org/10.1029/2000GB001325
      Wu, Y., Ma, B., Zhou, L., et al., 2009.Changes in the Soil Microbial Community Structure with Latitude in Eastern China, Based on Phospholipid Fatty Acid Analysis.Applied Soil Ecology, 43(1-2):234-240. https://doi.org/10.1016/j.apsoil.2009.08.002
      Xie, S.C., Evershed, R.P., Huang, X.Y., et al., 2013.Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China.The Geological Society of America, 41(8):827-830. https://doi.org/10.1130/g34318.1
      Yu, S.F., She, G.H., Ye, S.M., et al., 2018.Characteristics of Soil Microbial Biomass and Community Composition in Pinus Yunnanensis var.Tenuifolia Secondary Forests.Journal of Sustainable Forestry, 20:1-19. https://doi.org/10.1080/10549811.2018.1483250
      Zelles, L., 1997.Phospholipid Fatty Acid Profiles in Selected Members of Soil Microbial Communities.Chemosphere, 35:275-294. https://doi.org/10.1016/s0045-6535(97)00155-0
      Zelles, L., 1999.Fatty Acid Patterns of Phospholipids and Lipopolysaccharides in the Characterisation of Microbial Communities in Soil:A Review.Biology and Fertility of Soils, 29(2):111-129. http://www.bioone.org/servlet/linkout?suffix=i0277-5212-29-1-353-Zelles2&dbid=16&doi=10.1672%2F08-114.1&key=10.1007%2Fs003740050533
      Zhang, G., Zheng, C.Y., Wang, Y., et al., 2015.Soil Organic Carbon and Microbial Community Structure Exhibit Different Responses to Three Land Use Types in the North China Plain.Acta Agriculture Scandinavica, 65(4):341-349. https://doi.org/10.1080/09064710.2015.1011223
      Zhang, Y.Y., Zheng, N.G., Wang, J., et al., 2019.High Turnover Rate of Free Phospholipids in Soil Confirms the Classic Hypothesis of PLFA Methodology.Soil Biology and Biochemistry, 135:323-330. https://doi.org/10.1016/j.soilbio.2019.05.023
      Zogg, P.G., Zak, D.R., Ringelberg, D.B., et al., 1997.Compositional and Functional Shifts in Microbial Communities Due to Soil Warming.Soil Science Society of America Journal, 61(2):475-481. https://doi.org/10.2136/sssaj1997.03615995006100020015x
      黄咸雨, 张志麒, 王红梅, 等, 2017.神农架大九湖泥炭湿地关键带监测进展.地球科学, 42(6):1026-1038. doi: 10.3799/dqkx.2017.081
      李静霞, 李佳, 党海山, 等, 2007.神农架大九湖湿地公园的植被现状与保护对策.武汉植物学研究, 25(6):605 -611. http://d.old.wanfangdata.com.cn/Periodical/whzwxyj200706016
      李艳元, 葛继稳, 彭凤娇, 等, 2017.神农架大九湖泥炭湿地CH4通量特征及影响因子.地球科学, 42(5):832-842. doi: 10.3799/dqkx.2017.071
      罗涛, 伦子健, 顾延生, 等, 2015.神农架大九湖湿地植物群落调查与生态保护研究.湿地科学, 13(2):153-160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201502003
      秦养民, 巩静, 顾延生, 等, 2018.鄂西亚高山泥炭地有壳变形虫生态监测及对水位的指示意义.地球科学, 43(11):4036-4045. doi: 10.3799/dqkx.2018.599
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (1252) PDF downloads(60) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return