Citation: | Xu Zheng, Zheng Yongfei, 2019. Crust-Mantle Interaction in the Paleo-Pacific Subduction Zone: Geochemical Evidence from Cenozoic Continental Basalts in Eastern China. Earth Science, 44(12): 4135-4143. doi: 10.3799/dqkx.2019.273 |
Allègre, C.J., 1982.Chemical Geodynamics.Tectonophysics, 81(3-4):109-132. https://doi.org/10.1016/0040⁃1951(82)90125⁃1
|
Chen, L.H., Zeng, G., Jiang, S.Y., et al., 2009.Sources of Anfengshan Basalts:Subducted Lower Crust in the Sulu UHP Belt, China.Earth and Planetary Science Letters, 286(3-4):426-435. https://doi.org/10.1016/j.epsl.2009.07.006
|
Farmer, G.L., 2007.Continental Basaltic Rocks.Treatise on Geochemistry, 3:1-39. https://doi.org/10.1016/b0⁃08⁃043751⁃6/03019⁃x
|
Goes, S., Agrusta, R., van Hunen, J., et al., 2017.Subduction⁃Transition Zone Interaction:A Review.Geosphere, 13(3):644-664. https://doi.org/10.1130/ges01476.1
|
Hart, S.R., 1984.A Large⁃Scale Isotope Anomaly in the Southern Hemisphere Mantle.Nature, 309:753-757. https://doi.org/10.1038/309753a0
|
Hu, Y., Teng, F.Z., Zhang, H.F., et al., 2016.Metasomatism⁃Induced Mantle Magnesium Isotopic Heterogeneity:Evidence from Pyroxenites.Geochimica et Cosmochimica Acta, 185:88-111. https://doi.org/10.1016/j.gca.2015.11.001
|
Huang, J., Li, S.G., Xiao, Y.L., et al., 2015.Origin of Low δ26 Mg Cenozoic Basalts from South China Block and Their Geodynamic Implications.Geochimica et Cosmochimica Acta, 164:298-317. https://doi.org/10.1016/j.gca.2015.04.054
|
Huang, J.L., Zhao, D.P., 2006.High⁃Resolution Mantle Tomography of China and Surrounding Regions.Journal of Geophysical Research :Soild Earth, 111(B9):B09305. https://doi.org/10.1029/2005jb004066
|
Kimura, G., Kitamura, Y., Yamaguchi, A., et al., 2019.Origin of the Early Cenozoic Belt Boundary Thrust and Izanagi⁃Pacific Ridge Subduction in the Western Pacific Margin.Island Arc, 28(5). https://doi.org/10.1111/iar.12320
|
Li, C., van der Hilst, R.D., 2010.Structure of the Upper Mantle and Transition Zone beneath Southeast Asia from Traveltime Tomography.Journal of Geophysical Research:Soild Earth, 115(B7):B07308. https://doi.org/10.1029/2009jb006882
|
Li, Y.Q., Ma, C.Q., Robinson, P.T., et al., 2015.Recycling of Oceanic Crust from a Stagnant Slab in the Mantle Transition Zone:Evidence from Cenozoic Continental Basalts in Zhejiang Province, SE China.Lithos, 230:146-165. https://doi.org/10.1016/j.lithos.2015.05.021
|
Li, Y.Q., Ma, C.Q., Robinson, P.T., 2016a.Petrology and Geochemistry of Cenozoic Intra⁃Plate Basalts in East⁃Central China:Constraints on Recycling of an Oceanic Slab in the Source Region.Lithos, 262:27-43. https://doi.org/10.1016/j.lithos.2016.06.012
|
Li, H.Y., Xu, Y.G., Ryan, J.G., et al., 2016b.Olivine and Melt Inclusion Chemical Constraints on the Source of Intracontinental Basalts from the Eastern North China Craton:Discrimination of Contributions from the Subducted Pacific Slab.Geochimica et Cosmochimica Acta, 178:1-19. https://doi.org/10.1016/j.gca.2015.12.032
|
Li, H.Y., Zhou, Z., Ryan, J.G., et al., 2016c.Boron Isotopes Reveal Multiple Metasomatic Events in the Mantle beneath the Eastern North China Craton.Geochimica et Cosmochimica Acta, 194:77-90. https://doi.org/10.1016/j.gca.2016.08.027
|
Li, S.G., Yang, W., Ke, S., et al., 2017.Deep Carbon Cycles Constrained by a Large⁃Scale Mantle Mg Isotope Anomaly in Eastern China.National Science Review, 4(11):111-120. https://doi.org/10.1093/nsr/nww070
|
Liu, S.A., Wang, Z.Z., Li, S.G., et al., 2016.Zinc Isotope Evidence for a Large⁃Scale Carbonated Mantle beneath Eastern China.Earth and Planetary Science Letters, 444:169-178. https://doi.org/10.1016/j.epsl.2016.03.051
|
Liu, X., Zhao, D.P., Li, S.Z., et al., 2017.Age of the Subducting Pacific Slab beneath East Asia and Its Geodynamic Implications.Earth and Planetary Science Letters, 464:166-174. https://doi.org/10.1016/j.epsl.2017.02.024
|
Liu, Y.S., Gao, S., Kelemen, P.B., et al., 2008.Recycled Crust Controls Contrasting Source Compositions of Mesozoic and Cenozoic Basalts in the North China Craton.Geochimica et Cosmochimica Acta, 72(9):2349-2376. https://doi.org/10.1016/j.gca.2008.02.018
|
Morlidge, M., Pawley, A., Droop, G., 2006.Double Carbonate Breakdown Reactions at High Pressures:An Experimental Study in the System CaO⁃MgO⁃FeO⁃MnO⁃CO2.Contributions to Mineralogy and Petrology, 152(3):365-373. https://doi.org/10.1007/s00410⁃006⁃0112⁃5
|
Plank, T., 2014.The Chemical Composition of Subducting Sediments.Treatise on Geochemistry, 4:607-629. https://doi.org/10.1016/b978⁃0⁃08⁃095975⁃7.00319⁃3
|
Rudnick, R.L., Gao, S., 2014.Composition of the Continental Crust.Treatise on Geochemistry, 4:1-51. https://doi.org/10.1016/b978⁃0⁃08⁃095975⁃7.00301⁃6
|
Sato, K., Katsura, T., 2001.Experimental Investigation on Dolomite Dissociation into Aragonite+Magnesite up to 8.5 GPa.Earth and Planetary Science Letters, 184(2):529-534. https://doi.org/10.1016/S0012⁃821x(00)00346⁃0
|
Schmid, C., Goes, S., van der Lee, S., et al., 2002.Fate of the Cenozoic Farallon Slab from a Comparison of Kinematic Thermal Modeling with Tomographic Images.Earth and Planetary Science Letters, 204(1-2):17-32. https://doi.org/10.1016/s0012⁃821x(02)00985⁃8
|
Scire, A., Zandt, G., Beck, S., et al., 2016.Imaging the Transition from Flat to Normal Subduction:Variations in the Structure of the Nazca Slab and Upper Mantle under Southern Peru and Northwestern Bolivia.Geophysical Journal International, 204(1):457-479. https://doi.org/10.1093/gji/ggv452
|
Tang, Y.J., Zhang, H.F., Ying, J.F., 2006.Asthenosphere⁃Lithospheric Mantle Interaction in an Extensional Regime:Implication from the Geochemistry of Cenozoic Basalts from Taihang Mountains, North China Craton.Chemical Geology, 233(3-4):309-327. https://doi.org/10.1016/j.chemgeo.2006.03.013
|
Wang, X.C., Li, Z.X., Li, X.H., et al., 2012.Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia:A Consequence of a Young Thermal Mantle Plume Close to Subduction Zones? Journal of Petrology, 53(1):177-233. https://doi.org/10.1093/petrology/egr061
|
Wang, X.C., Wilde, S.A., Li, Q.L., et al., 2015.Continental Flood Basalts Derived from the Hydrous Mantle Transition Zone.Nature Communications, 6:7700. https://doi.org/10.1038/ncomms8700
|
Wang, Y., Zhao, Z.F., Zheng, Y.F., et al., 2011.Geochemical Constraints on the Nature of Mantle Source for Cenozoic Continental Basalts in East⁃Central China.Lithos, 125(3-4):940-955. https://doi.org/10.1016/j.lithos.2011.05.007
|
Xu, Y.G., 2014.Recycled Oceanic Crust in the Source of 90-40 Ma Basalts in North and Northeast China:Evidence, Provenance and Significance.Geochimica et Cosmochimica Acta, 143:49-67. https://doi.org/10.1016/j.gca.2014.04.045
|
Xu, Y.G., Ma, J.L., Frey, F.A., et al., 2005.Role of Lithosphere⁃Asthenosphere Interaction in the Genesis of Quaternary Alkali and Tholeiitic Basalts from Datong, Western North China Craton.Chemical Geology, 224(4):247-271. https://doi.org/10.1016/j.chemgeo.2005.08.004
|
Xu, Y.G., Zhang, H.H., Qiu, H.N., et al., 2012a.Oceanic Crust Components in Continental Basalts from Shuangliao, Northeast China:Derived from the Mantle Transition Zone? Chemical Geology, 328:168-184. https://doi.org/10.1016/j.chemgeo.2012.01.027
|
Xu, Z., Zhao, Z.F., Zheng, Y.F., 2012b.Slab⁃Mantle Interaction for Thinning of Cratonic Lithospheric Mantle in North China:Geochemical Evidence from Cenozoic Continental Basalts in Central Shandong.Lithos, 146-147:202-217. https://doi.org/10.1016/j.lithos.2012.05.019
|
Xu, Z., Zheng, Y.F., 2017.Continental Basalts Record the Crust⁃Mantle Interaction in Oceanic Subduction Channel:A Geochemical Case Study from Eastern China.Journal of Asian Earth Sciences, 145:233-259. https://doi.org/10.1016/j.jseaes.2017.03.010
|
Xu, Z., Zheng, Y.F., Zhao, Z.F., 2017.The Origin of Cenozoic Continental Basalts in East⁃Central China:Constrained by Linking Pb Isotopes to other Geochemical Variables.Lithos, 268-271:302-319. https://doi.org/10.1016/j.lithos.2016.11.006
|
Yang, Z.F., Li, J., Liang, W.F., et al., 2016.On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China:Implications for Source Lithology and the Origin of Basalts.Earth⁃Science Reviews, 157:18-31. https://doi.org/10.1016/j.earscirev.2016.04.001
|
Yang, Z.F., Zhou, J.H., 2013.Can We Identify Source Lithology of Basalt? Scientific Reports, 3:1856. https://doi.org/10.1038/srep01856
|
Zhang, J.J., Zheng, Y.F., Zhao, Z.F., 2009.Geochemical Evidence for Interaction between Oceanic Crust and Lithospheric Mantle in the Origin of Cenozoic Continental Basalts in East⁃Central China.Lithos, 110(1-4):305-326. https://doi.org/10.1016/j.lithos.2009.01.006
|
Zheng, Y.F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10(4):1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003
|
Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519. https://doi.org/10.1093/nsr/nww049
|
Zheng, Y.F., Wu, F.Y., 2009.Growth and Reworking of Cratonic Lithosphere.Chinese Science Bulletin, 54(14):1945-1949(in Chinese). doi: 10.1360/csb2009-54-14-1945
|
Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018.Mesozoic Mafic Magmatism in North China:Implications for Thinning and Destruction of Cratonic Lithosphere.Science China:Earth Sciences, 48(4):379-414(in Chinese).
|
Zhi, X.C., Song, Y., Frey, F.A., et al., 1990.Geochemistry of Hannuoba Basalts, Eastern China:Constraints on the Origin of Continental Alkalic and Tholeiitic Basalt.Chemical Geology, 88(1-2):1-33. https://doi.org/10.1016/0009⁃2541(90)90101⁃c
|
Zhou, X., Armstrong, R., 1982.Cenozoic Volcanic Rocks of Eastern China:Secular and Geographic Trends in Chemistry and Strontium Isotopic Composition.Earth and Planetary Science Letters, 58(3):301-329. https://doi.org/10.1016/0012⁃821x(82)90083⁃8
|
郑永飞, 吴福元, 2009.克拉通岩石圈的生长和再造.科学通报, 54(14):1945-1949. http://www.cnki.com.cn/Article/CJFDTotal-KXTB200914002.htm
|
郑永飞, 徐峥, 赵子福, 等, 2018.华北中生代镁铁质岩浆作用与克拉通减薄和破坏.中国科学:地球科学, 48(4):379-414. doi: 10.1360/N072017-00235
|