• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 12
    Dec.  2019
    Turn off MathJax
    Article Contents
    Shen Ji, Li Wangye, Li Shuguang, Xiao Yilin, 2019. Crust-Mantle Interactions at Different Depths in the Subduction Channel: Magnesium Isotope Records of Ultramafic Rocks from the Mantle Wedges. Earth Science, 44(12): 4102-4111. doi: 10.3799/dqkx.2019.286
    Citation: Shen Ji, Li Wangye, Li Shuguang, Xiao Yilin, 2019. Crust-Mantle Interactions at Different Depths in the Subduction Channel: Magnesium Isotope Records of Ultramafic Rocks from the Mantle Wedges. Earth Science, 44(12): 4102-4111. doi: 10.3799/dqkx.2019.286

    Crust-Mantle Interactions at Different Depths in the Subduction Channel: Magnesium Isotope Records of Ultramafic Rocks from the Mantle Wedges

    doi: 10.3799/dqkx.2019.286
    • Received Date: 2019-10-12
    • Publish Date: 2019-12-15
    • At different depths, the subducted slabs could release melts/fluids with distinct chemical components from different reservoirs into the subduction channel. Such melts/fluids may then affect the geochemical compositions of the overlying mantle wedge and the island arc magmas. However, how to identify the sources of melts/fluids at different depths in the subduction channels remains a challenging issue in studies of the subduction zones. Based on the Mg isotope studies on the ultramafic rocks derived from the mantle wedge at different depths, Mg isotopes are proposed to be a useful tool to distinguish the sources of melts/fluids in the subduction channel.A set of metamorphic ultramafic rocks from the Franciscan complex in California that have undergone multiple stages of metasomatism at the shallow depth (< ~60 km) in the subduction channel was studied. During the dehydration reactions that produced talc from serpentine, light Mg isotopes were preferentially released into fluids whereas heavy Mg isotopes were retained in talc. The tremolite-dominated samples that metamorphosed further by slab-derived fluids have high CaO contents and light Mg isotopic compositions, implying that a certain amount of Mg-bearing calcites could be dissolved into fluids and participated in metamorphism of mantle wedge peridotites. The petrographic and elemental geochemical studies of the ultramafic rocks from the Maowu complex of the Dabie orogenic belt, which were derived from the deep mantle wedge (~160 km), confirmed the metasomatism genesis. Combined with multiphase inclusions, element geochemistry, and peak P-T condition, we speculate that the metasomatic fluid was supercritical. Zircon geochronology studies revealed that the metasomatism mainly occurred during the oceanic crust subduction at Paleozoic (454±58 Ma), and the ultra-high pressure metamorphism occurred during the continental crust subduction at Triassic (232.8±7.9 Ma). The large amount of carbonate mineral inclusions and heavy oxygen isotope characteristics of the Paleozoic zircon indicate the incorporations of carbonate components during the Paleozoic metasomatism. The lighter Mg isotope composition of whole rocks and individual minerals than that of the mantle and the Dabie eclogite, indicates that the carbonate components should be sedimentary Mg-rich carbonates, which was dissolved in the supercritical fluid.Due to that the sedimentary carbonate has a unique and significantly enriched light Mg isotope feature, the metasomatism will cause heterogeneous Mg isotopic compositions of the mantle wedge, which may account for the observed Mg isotope characteristics of the arc lavas. Magnesium isotopes thus could be a potentially useful tracer of crust-mantle interactions at subduction zones.

       

    • loading
    • Bebout, G.E., Penniston-Dorland, S.C., 2016.Fluid and Mass Transfer at Subduction Interfaces:The Field Metamorphic Record.Lithos, 240-243:228-258. https://doi.org/10.1016/j.lithos.2015.10.007
      Chen, Y., Su, B., Chu, Z.Y., 2017.Modification of an Ancient Subcontinental Lithospheric Mantle by Continental Subduction:Insight from the Maowu Garnet Peridotites in the Dabie UHP Belt, Eastern China.Lithos, 278-281:54-71. https://doi.org/10.1016/j.lithos.2017.01.025
      Chen, Y., Ye, K., Guo, S., et al., 2013a.Multistage Metamorphism of Garnet Orthopyroxenites from the Maowu Mafic-Ultramafic Complex, Dabieshan UHP Terrane, Eastern China.International Geology Review, 55(10):1239-1260. https://doi.org/10.1080/00206814.2013.772694
      Chen, Y., Ye, K., Wu, Y.W., et al., 2013b.Hydration and Dehydration in the Lower Margin of a Cold Mantle Wedge:Implications for Crust-Mantle Interactions and Petrogeneses of Arc Magmas.International Geology Review, 55(12):1506-1522. https://doi.org/10.1080/00206814.2013.781732
      Chen, Y.X., Schertl, H.P., Zheng, Y.F., et al., 2016.Mg-O Isotopes Trace the Origin of Mg-Rich Fluids in the Deeply Subducted Continental Crust of Western Alps.Earth and Planetary Science Letters, 456:157-167. https://doi.org/10.1016/j.epsl.2016.09.010
      Fang, W., Dai, L.Q., Zheng, Y.F., et al., 2019.Tectonic Transition from Oceanic Subduction to Continental Collision:New Geochemical Evidence from Early-Middle Triassic Mafic Igneous Rocks in Southern Liaodong Peninsula, East-Central China.GSA Bulletin. https://doi.org/10.1130/B35278.1
      Huang, J., Li, S.G., Xiao, Y.L., et al., 2015.Origin of Low δ26Mg Cenozoic Basalts from South China Block and Their Geodynamic Implications.Geochimica et Cosmochimica Acta, 164:298-317. https://doi.org/10.1016/j.gca.2015.04.054
      Jahn, B.M., Fan, Q.C., Yang, J.J., et al., 2003.Petrogenesis of the Maowu Pyroxenite-Eclogite Body from the UHP Metamorphic Terrane of Dabieshan:Chemical and Isotopic Constraints.Lithos, 70(3-4):243-267. https://doi.org/10.1016/S0024-4937(03)00101-4
      Kelemen, P.B., Manning, C.E., 2015.Reevaluating Carbon Fluxes in Subduction Zones, What Goes Down, Mostly Comes up.Proceedings of the National Academy of Sciences of the United States of America, 112(30):E3997-E4006. https://doi.org/10.1073/pnas.1507889112
      Kessel, R., Schmidt, M.W., Ulmer, P., et al., 2005.Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth.Nature, 437:724-727. https://doi.org/10.1038/nature03971
      King, R.L., Kohn, M.J., Eiler, J.M., 2003.Constraints on the Petrologic Structure of the Subduction Zone Slab-Mantle Interface from Franciscan Complex Exotic Ultramafic Blocks.Geological Society of America Bulletin, 115(9):1097. https://doi.org/10.1130/b25255.1
      Li, S.G., Yang, W., Ke, S., et al., 2017.Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China.National Science Review, 4:111-120. https://doi.org/10.1093/nsr/nww070
      Li, S.Z., Zhao, S.J., Li, X.Y., et al., 2016a.Proto-Tehtys Ocean in East Asia (Ⅰ):Northern and Southern Border Faults and Subduction Polarity.Acta Petrologica Sinica, 32(9):2609-2627(in Chinese with English abstract).
      Li, S.Z., Zhao, S.J., Yu, S., et al., 2016b.Proto-Tehtys Ocean in East Asia (Ⅱ):Affinity and Assmbly of Early Paleozoic Micro-Continental Blocks.Acta Petrologica Sinica, 32(9) :2628-2644(in Chinese with English abstract).
      Li, W.Y., Teng, F.Z., Xiao, Y.L., 2018.Magnesium Isotope Record of Fluid Metasomatism along the Slab-Mantle Interface in Subduction Zones.Geochimica et Cosmochimica Acta, 237:312-319. https://doi.org/10.1016/j.gca.2018.06.034
      Liu, X.C., Li, S.Z., Jahn, B.M., 2015.Tectonic Evolution of the Tongbai-Hong'an Orogen in Central China:From Oceanic Subduction/Accretion to Continent-Continent Collision.Science China:Earth Sciences, 45(8):1088-1108(in Chinese). http://cn.bing.com/academic/profile?id=d74fcd5ea22ab38c19817a445acd9be8&encoded=0&v=paper_preview&mkt=zh-cn
      Macris, C.A., Young, E.D., Manning, C.E., 2013.Experimental Determination of Equilibrium Magnesium Isotope Fractionation between Spinel, Forsterite, and Magnesite from 600 to 800 ℃.Geochimica et Cosmochimica Acta, 118:18-32. https://doi.org/10.1016/j.gca.2013.05.008
      Malaspina, N., Hermann, J., Scambelluri, M., et al., 2006.Polyphase Inclusions in Garnet-Orthopyroxenite (Dabie Shan, China) as Monitors for Metasomatism and Fluid-Related Trace Element Transfer in Subduction Zone Peridotite.Earth and Planetary Science Letters, 249(3-4):173-187. https://doi.org/10.1016/j.epsl.2006.07.017
      Malaspina, N., Hermann, J., Scambelluri, M., 2009.Fluid/Mineral Interaction in UHP Garnet Peridotite.Lithos, 107(1-2):38-52. https://doi.org/10.1016/j.lithos.2008.07.006
      Malaspina, N., Alvaro, M., Campione, M., et al., 2015.Dynamics of Mineral Crystallization from Precipitated Slab-Derived Fluid Phase:First In Situ Synchrotron X-Ray Measurements.Contributions to Mineralogy and Petrology, 169(3):26. https://doi.org/10.1007/s00410-015-1121-z
      von Strandmann, P.A.E.P., Dohmen, R., Marschall, H.R., et al., 2015.Extreme Magnesium Isotope Fractionation at Outcrop Scale Records the Mechanism and Rate at Which Reaction Fronts Advance.Journal of Petrology, 56(1):33-58. https://doi.org/10.1093/petrology/egu070
      Schmidt, M.W., Vielzeuf, D., Auzanneau, E., 2004.Melting and Dissolution of Subducting Crust at High Pressures:The Key Role of White Mica.Earth and Planetary Science Letters, 228(1-2):65-84. https://doi.org/10.1016/j.epsl.2004.09.020
      Shen, J., Li, S.G., Wang, S.J., et al., 2018.Subducted Mg-Rich Carbonates into the Deep Mantle Wedge.Earth and Planetary Science Letters, 503:118-130. https://doi.org/10.1016/j.epsl.2018.09.011
      Su, B.X., Hu, Y., Teng, F.Z., et al., 2019.Light Mg Isotopes in Mantle-Derived Lavas Caused by Chromite Crystallization, Instead of Carbonatite Metasomatism.Earth and Planetary Science Letters, 522:79-86. https://doi.org/10.1016/j.epsl.2019.06.016
      Sun, S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tan, D.B., Li, D.Y., Xiao, Y.L., 2018.Geochemical Characteristics of Niobium and Tantalum:A Review of Twin Elements.Earth Science, 43(1):317-332(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801019
      Teng, F.Z., 2017.Magnesium Isotope Geochemistry.Reviews in Mineralogy and Geochemistry, 82(1):219-287. https://doi.org/10.2138/rmg.2017.82.7
      Teng, F.Z., Hu, Y., Chauvel, C., 2016.Magnesium Isotope Geochemistry in Arc Volcanism.Proceedings of the National Academy of Sciences of the United States of America, 113(26):7082-7087. https://doi.org/10.1073/pnas.1518456113
      Teng, F.Z., Li, W.Y., Ke, S., et al., 2010.Magnesium Isotopic Composition of the Earth and Chondrites. Geochimica et Cosmochimica Acta, 74:4150-4166. https://doi.org/10.1016/j.gca.2010.04.019
      Wang, X.J., Chen, L.H., Hofmann, A.W., et al., 2018.Recycled Ancient Ghost Carbonate in the Pitcairn Mantle Plume.Proceedings of the National Academy of Sciences, 115(35):8682-8687. https://doi.org/ 10.1073/pnas.1719570115
      Yang, W., Teng, F.Z., Zhang, H.F., et al., 2012.Magnesium Isotopic Systematics of Continental Basalts from the North China Craton:Implications for Tracing Subducted Carbonate in the Mantle.Chemical Geology, 328:185-194. https://doi.org/10.1016/j.chemgeo.2012.05.018
      Zhang, H.F., Zhou, X.H., Fan, W.M., et al., 2005.Nature, Composition, Enrichment Processes and Its Mechanism of the Mesozoic Lithospheric Mantle beneath the Southeastern North China Craton.Acta Petrologica Sinica, 21(4):1271-1280(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200504024
      Zhao, S.J., Li, S.Z., Yu, S., et al., 2016.Proto-Tethys Ocean in East Asia (Ⅲ):Structures of Ductile Shear Zones in the North Qinling.Acta Petrologica Sinica, 32(9):2645-2655(in Chinese with English abstract).
      Zheng, J.P., Zhao, Y., Xiong, Q., 2019.Genesis and Geological Significance of Zircons in Orogenic Peridotite.Earth Science, 44(4):1067-1082(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201904002
      Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
      Zheng, Y.F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10(4):1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003
      Zheng, Y.F., Hermann, J., 2014.Geochemistry of Continental Subduction-Zone Fluids.Earth, Planets and Space, 66(1):93. https://doi.org/10.1186/1880-5981-66-93
      Zheng, Y.F., Zhao, Z.F., Chen, Y.X., 2013.Continental Subduction Channel Processes:Plate Interface Interaction during Continental Collision.Chinese Science Bulletin, 58(23):2233-2239(in Chinese). doi: 10.1360/csb2013-58-23-2233
      李三忠, 赵淑娟, 李玺瑶, 等, 2016a.东亚原特提斯洋(Ⅰ):南北边界和俯冲极性.岩石学报, 32(9):2609-2627. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201609002.htm
      李三忠, 赵淑娟, 余珊, 等, 2016b.东亚原特提斯洋(Ⅱ):早古生代微陆块亲缘性与聚合.岩石学报, 32(9):2628-2644. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201609003.htm
      刘晓春, 李三忠, 江博明, 2015.桐柏-红安造山带的构造演化:从大洋俯冲/增生到陆陆碰撞.中国科学:地球科学, 45(8):1088-1108. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201508002.htm
      谭东波, 李东永, 肖益林, 2018."孪生元素"铌-钽的地球化学特性和研究进展.地球科学, 43(1):317-332. doi: 10.3799/dqkx.2018.019
      张宏福, 周新华, 范蔚茗, 等, 2005.华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理.岩石学报, 21(4):1271-1280. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504024
      赵淑娟, 李三忠, 余珊, 等, 2016.东亚原特提斯洋(Ⅲ):北秦岭韧性剪切带构造特征.岩石学报, 32(9):2645-2655. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201609004.htm
      郑建平, 赵伊, 熊庆, 2019.造山带橄榄岩中锆石的成因及其地质意义.地球科学, 44(4):1067-1082. doi: 10.3799/dqkx.2018.375
      郑永飞, 赵子福, 陈伊翔, 2013.大陆俯冲隧道过程:大陆碰撞过程中的板块界面相互作用.科学通报, 58(23):2233-2239. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201323000.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (4896) PDF downloads(155) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return