Citation: | Guo Zhikui, Chen Chao, Tao Chunhui, Hu Zhengwang, Xu Shunfang, 2021. Numerical Modeling of Mineral Precipitation in Seafloor Hydrothermal Circulation. Earth Science, 46(2): 729-742. doi: 10.3799/dqkx.2019.959 |
Andersen, C. , Rüpke, L. , Hasenclever, J. , et al. , 2015. Fault Geometry and Permeability Contrast Control Vent Temperatures at the Logatchev 1 Hydrothermal Field, Mid-Atlantic Ridge. Geology, 43(1): 51-54. https://doi.org/10.1130/g36113.1
|
Barreyre, T. , Olive, J. A. , Crone, T. J. , et al. , 2018. Depth-Dependent Permeability and Heat Output at Basalt-Hosted Hydrothermal Systems across Mid-Ocean Ridge Spreading Rates. Geochemistry, Geophysics, Geosystems, 19(4): 1259-1281. https://doi.org/10.1002/2017gc007152
|
Becker, K. , Fisher, A. T. , 2000. Permeability of Upper Oceanic Basement on the Eastern Flank of the Juan de Fuca Ridge Determined with Drill-String Packer Experiments. Journal of Geophysical Research: Solid Earth, 105(B1): 897-912. https://doi.org/10.1029/1999jb900250
|
Coumou, D. , Driesner, T. , Heinrich, C. A. , 2008. The Structure and Dynamics of Mid-Ocean Ridge Hydrothermal Systems. Science, 321(5897): 1825-1828. https://doi.org/10.1126/science.1159582
|
Driesner, T. , 2010. The Interplay of Permeability and Fluid Properties as a First Order Control of Heat Transport, Venting Temperatures and Venting Salinities at Mid-Ocean Ridge Hydrothermal Systems. Geofluids, 10: 132-141. https://doi.org/10.1111/j.1468-8123.2009.00273.x
|
Elderfield, H. , Schultz, A. , 1996. Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean. Annual Review of Earth and Planetary Sciences, 24(1): 191-224. https://doi.org/10.1146/annurev.earth.24.1.191
|
Fontaine, F. J. , Cannat, M. , Escartin, J. , et al. , 2014. Along-Axis Hydrothermal Flow at the Axis of Slow Spreading Mid-Ocean Ridges: Insights from Numerical Models of the Lucky Strike Vent Field (MAR). Geochemistry, Geophysics, Geosystems, 15(7): 2918-2931. https://doi.org/10.1002/2014gc005372
|
Fontaine, F. J. , Rabinowicz, M. , Boulègue, J. , 2001. Permeability Changes Due to Mineral Diagenesis in Fractured Crust: Implications for Hydrothermal Circulation at Mid-Ocean Ridges. Earth and Planetary Science Letters, 184(2): 407-425. https://doi.org/10.1016/s0012-821x(00)00332-0
|
German, C. R., Seyfried, J. W. E., 2014. Hydrothermal Processes. In: Schubert, G., ed., Treatise on Geochemistry. Elsevier, Amsterdam. 191-233. https://doi.org/10.1016/b978-0-08-095975-7.00607-0
|
Guo, Q. H. , Liu, M. L. , Li, J. X. , 2017. Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science, 42(2): 286-297(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201702010.htm
|
Hannington, M. , Harðardóttir, V. , Garbe-Schönberg, D. , et al. , 2016. Gold Enrichment in Active Geothermal Systems by Accumulating Colloidal Suspensions. Nature Geoscience, 9(4): 299-302. https://doi.org/10.1038/ngeo2661
|
Hannington, M. D., de Ronde, C. E. J., Petersen, S., 2005. Sea-Floor Tectonics and Submarine Hydrothermal Systems. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists. https://doi.org/10.5382/av100.06
|
Hannington, M. D., Galley, A. G., Herzig, P. M., et al., 1998. Comparison of the TAG Mound and Stockwork Complex with Cyprus-Type, Massive Sulfide Deposits. In: Herzig, P. M., Humphris, S. E., Miller, D. J., eds., Proceedings of the Ocean Drilling Program. Ocean Drilling Program, Texas. https://doi.org/10.2973/odp.proc.sr.158.217.1998
|
Hasenclever, J. , Theissen-Krah, S. , Rüpke, L. H. , et al. , 2014. Hybrid Shallow On-Axis and Deep Off-Axis Hydrothermal Circulation at Fast-Spreading Ridges. Nature, 508(7497): 508-512. https://doi.org/10.1038/nature13174
|
Ingebritsen, S. E. , Geiger, S. , Hurwitz, S. , et al. , 2010. Numerical Simulation of Magmatic Hydrothermal Systems. Reviews of Geophysics, 48(1): RG1002. https://doi.org/10.1029/2009rg000287
|
Ingebritsen, S. E. , Manning, C. E. , 2010. Permeability of the Continental Crust: Dynamic Variations Inferred from Seismicity and Metamorphism. Geofluids, 10(1-2): 193-205. https://doi.org/10.1111/j.1468-8123.2010.00278.x
|
Jupp, T. , Schultz, A. , 2000. A Thermodynamic Explanation for Black Smoker Temperatures. Nature, 403(6772): 880-883. https://doi.org/10.1038/35002552
|
Kawada, Y. , Yoshida, S. , 2010. Formation of a Hydrothermal Reservoir Due to Anhydrite Precipitation in an Arc Volcano Hydrothermal System. Journal of Geophysical Research: Solid Earth, 115(B11): B11106. https://doi.org/10.1029/2010jb007708
|
Kulik, D. A. , Wagner, T. , Dmytrieva, S. V. , et al. , 2013. GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes. Computational Geosciences, 17(1): 1-24. https://doi.org/10.1007/s10596-012-9310-6
|
Li, H. M. , Zhai, S. K. , Yu, Z. H. , 2008. Fluid Evolution Model of the Atlantic TAG Hydrothermal Activity Area. Scientia Sinica Terrae, 38(9): 1136-1145(in Chinese).
|
Li, J. , Sun, Z. L. , Huang, W. , et al. , 2014. Modern Seafloor Hydrothermal Processes and Mineralization. Earth Science, 39(3): 312-324(in Chinese with English abstract). http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Earth%20Science&atitle=Modern%20Seafloor%20Hydrothermal%20Processes%20and%20Mineralization
|
Li, J. X. , Guo, Q. H. , Yu, Z. Y. , 2017. Impact of Clay Mineral Formation in High-Temperature Geothermal System on Accuracy of Na-K and K-Mg Geothermometers. Earth Science, 42(1): 142-154(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201701012.htm
|
Liu, K. J. , Huang, F. , Gao, S. , et al. , 2018. Characteristics and Research Significance of Polymorphic Pyrite in Logatchev Hydrothermal Area, North Atlantic. Earth Science, 43(5): 1562-1573(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201805018.htm
|
Lowell, R. P. , Farough, A. , Germanovich, L. N. , et al. , 2012. A Vent-Field-Scale Model of the East Pacific Rise 9°50'N Magma-Hydrothermal System. Oceanography, 25(1): 158-167. https://doi.org/10.5670/oceanog.2012.13
|
Lowell, R. P. , Farough, A. , Hoover, J. , et al. , 2013. Characteristics of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers. Geochemistry, Geophysics, Geosystems, 14(6): 1756-1770. https://doi.org/10.1002/ggge.20109
|
Lowell, R. P. , Gosnell, S. , Yang, Y. , 2007. Numerical Simulations of Single-Pass Hydrothermal Convection at Mid-Ocean Ridges: Effects of the Extrusive Layer and Temperature-Dependent Permeability. Geochemistry, Geophysics, Geosystems, 8(10): Q10011. https://doi.org/10.1029/2007gc001653
|
Lowell, R. P. , Yao, Y. F. , Germanovich, L. N. , 2003. Anhydrite Precipitation and the Relationship between Focused and Diffuse Flow in Seafloor Hydrothermal Systems. Journal of Geophysical Research: Solid Earth, 108(B9): 2424. https://doi.org/10.1029/2002jb002371
|
Mezon, C. , Mourzenko, V. V. , Thovert, J. F. , et al. , 2018. Thermal Convection in Three-Dimensional Fractured Porous Media. Physical Review E, 97(1): 013106. https://doi.org/10.1103/physreve.97.013106
|
Pierre, S. , Gysi, A. P. , Monecke, T. , 2018. Fluid Chemistry of Mid-Ocean Ridge Hydrothermal Vents: A Comparison between Numerical Modeling and Vent Geochemical Data. Geofluids, 1-20. https://doi.org/10.1155/2018/1389379
|
Sleep, N. H. , 1991. Hydrothermal Circulation, Anhydrite Precipitation, and Thermal Structure at Ridge Axes. Journal of Geophysical Research: Solid Earth, 96(B2): 2375-2387. https://doi.org/10.1029/90jb02335
|
Syverson, D. D. , Scheuermann, P. , Higgins, J. A. , et al. , 2018. Experimental Partitioning of Ca Isotopes and Sr into Anhydrite: Consequences for the Cycling of Ca and Sr in Subseafloor Mid-Ocean Ridge Hydrothermal Systems. Geochimica et Cosmochimica Acta, 236: 160-178. https://doi.org/10.1016/j.gca.2018.03.018
|
Tao, C. H. , Lin, J. , Guo, S. Q. , et al. , 2012. First Active Hydrothermal Vents on an Ultraslow-Spreading Center: Southwest Indian Ridge. Geology, 40(1): 47-50. https://doi.org/10.1130/g32389.1
|
Tivey, M. K. , 2007. Generation of Seafloor Hydrothermal Vent Fluids and Associated Mineral Deposits. Oceanography, 20(1): 50-65. https://doi.org/10.5670/oceanog.2007.80
|
Tivey, M. K. , Humphris, S. E. , Thompson, G. , et al. , 1995. Deducing Patterns of Fluid Flow and Mixing within the TAG Active Hydrothermal Mound Using Mineralogical and Geochemical Data. Journal of Geophysical Research: Solid Earth, 100(B7): 12527-12555. https://doi.org/10.1029/95jb00610
|
Tivey, M. K. , McDuff, R. E. , 1990. Mineral Precipitation in the Walls of Black Smoker Chimneys: A Quantitative Model of Transport and Chemical Reaction. Journal of Geophysical Research: Solid Earth, 95(B8): 12617-12637. https://doi.org/10.1029/jb095ib08p12617
|
Wagner, W. , Pruß, A. , 2002. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical and Chemical Reference Data, 31(2): 387-535. https://doi.org/10.1063/1.1461829
|
Wang, S. J. , Zhai, S. K. , Yu, Z. H. , et al. , 2018. Reflections on Model of Modern Seafloor Hydrothermal System. Earth Science, 43(3): 835-850(in Chinese with English abstract). http://www.researchgate.net/publication/325084055_Reflections_on_Model_of_Modern_Seafloor_Hydrothermal_System
|
Weis, P. , Driesner, T. , Heinrich, C. A. , 2012. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts within Dynamic Fluid Plumes. Science, 338(6114): 1613-1616. https://doi.org/10.1126/science.1225009
|
Xi, Z. Z. , Li, R. X. , Song, G. , et al. , 2016. Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits. Earth Science, 41(8): 1395-1401(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201608011.htm
|
Xu, T. F. , Sonnenthal, E. , Spycher, N. , et al. , 2006. TOUGHREACT-A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media: Applications to Geothermal Injectivity and CO2 Geological Sequestration. Computers & Geosciences, 32(2): 145-165. https://doi.org/10.1016/j.cageo.2005.06.014
|
Yapparova, A. , Gabellone, T. , Whitaker, F. , et al. , 2017. Reactive Transport Modelling of Dolomitisation Using the New CSMP++GEM Coupled Code: Governing Equations, Solution Method and Benchmarking Results. Transport in Porous Media, 117(3): 385-413. https://doi.org/10.1007/s11242-017-0839-7
|
Yu, X. , Chu, F. Y. , Dong, Y. H. , et al. , 2013. Detachment Fault and Oceanic Core Complex: A New Mode of Seafloor Spreading. Earth Science, 38(5): 995-1004(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201305011.htm
|
Zhao, X. F. , Li, Z. K. , Zhao, S. R. , et al. , 2019. Early Cretaceous Regional-Scale Magmatic-Hydrothermal Metallogenic System at the Southern Margin of the North China Carton. Earth Science, 44(1): 52-68(in Chinese with English abstract). http://www.researchgate.net/publication/332034266_Early_Cretaceous_Regional-Scale_Magmatic-Hydrothermal_Metallogenic_System_at_the_Southern_Margin_of_the_North_China_Carton
|
郭清海, 刘明亮, 李洁祥, 2017. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因. 地球科学, 42(2): 286-297. doi: 10.3799/dqkx.2017.021
|
李怀明, 翟世奎, 于增慧, 2008. 大西洋TAG热液活动区流体演化模式. 中国科学: 地球科学, 38(9): 1136-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200809010.htm
|
李军, 孙治雷, 黄威, 等, 2014. 现代海底热液过程及成矿. 地球科学, 39(3): 312-324. doi: 10.3799/dqkx.2014.030
|
李洁祥, 郭清海, 余正艳, 2017. 高温地热系统中粘土矿物形成对Na-K和K-Mg地球化学温标准确性的影响. 地球科学, 42(1): 142-154. doi: 10.3799/dqkx.2017.011
|
刘开君, 黄菲, 高尚, 等, 2018. 北大西洋Logatchev热液区多形貌黄铁矿特征及其意义. 地球科学, 43(5): 1562-1573. doi: 10.3799/dqkx.2018.414
|
王淑杰, 翟世奎, 于增慧, 等, 2018. 关于现代海底热液活动系统模式的思考. 地球科学, 43(3): 835-850. doi: 10.3799/dqkx.2018.907
|
席振铢, 李瑞雪, 宋刚, 等, 2016. 深海热液金属硫化物矿电性结构. 地球科学, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110
|
余星, 初凤友, 董彦辉, 等, 2013. 拆离断层与大洋核杂岩: 一种新的海底扩张模式. 地球科学, 38(5): 995-1004. doi: 10.3799/dqkx.2013.097
|
赵新福, 李占轲, 赵少瑞, 等, 2019. 华北克拉通南缘早白垩世区域大规模岩浆-热液成矿系统. 地球科学, 44(1): 52-68. doi: 10.3799/dqkx.2018.372
|