• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Guo Zhikui, Chen Chao, Tao Chunhui, Hu Zhengwang, Xu Shunfang, 2021. Numerical Modeling of Mineral Precipitation in Seafloor Hydrothermal Circulation. Earth Science, 46(2): 729-742. doi: 10.3799/dqkx.2019.959
    Citation: Guo Zhikui, Chen Chao, Tao Chunhui, Hu Zhengwang, Xu Shunfang, 2021. Numerical Modeling of Mineral Precipitation in Seafloor Hydrothermal Circulation. Earth Science, 46(2): 729-742. doi: 10.3799/dqkx.2019.959

    Numerical Modeling of Mineral Precipitation in Seafloor Hydrothermal Circulation

    doi: 10.3799/dqkx.2019.959
    • Received Date: 2019-03-18
    • Publish Date: 2021-02-15
    • To understand the mechanism of high-temperature hydrothermal system in highly permeable oceanic crust, a reactive hydrothermal convection model is proposed to solve mineral precipitation and its feedback on permeability. Mineral reaction of anhydrite, pyrite and chalcopyrite are accounted in the model. Precipitation and dissolution can be solved using solubility product of the mineral and transformed into permeability change. The results suggest that pyrite and chalcopyrite are precipitated as cap-like structure around 300-380℃ isotherm. With hydrothermal temperature increasing, the cap-like structure is moving to seafloor. Anhydrite is precipitated as chimney-like structure around focus flow by seawater heating and seawater-hydrothermal mixing. The low permeable chimney-like structure prevent seawater-hydrothermal mixing and thus keep hydrothermal at high temperature. Once the high-temperature focusing flow is formed, more metal can be dissolved in hydrothermal and be transported to shallow crust and seafloor. The numerical simulation results could help to understand the mechanism of high-temperature hydrothermal venting.

       

    • 致谢: 德国GEOMAR的Jörg Hasenclever博士和Lars H. Rüpke教授为本文的数值模拟提供了很多建设性的意见,Sebastian Fuchs博士为本文提供了黄铁矿和黄铜矿溶度积实验数据,在此表示诚挚的谢意!
    • Andersen, C. , Rüpke, L. , Hasenclever, J. , et al. , 2015. Fault Geometry and Permeability Contrast Control Vent Temperatures at the Logatchev 1 Hydrothermal Field, Mid-Atlantic Ridge. Geology, 43(1): 51-54. https://doi.org/10.1130/g36113.1
      Barreyre, T. , Olive, J. A. , Crone, T. J. , et al. , 2018. Depth-Dependent Permeability and Heat Output at Basalt-Hosted Hydrothermal Systems across Mid-Ocean Ridge Spreading Rates. Geochemistry, Geophysics, Geosystems, 19(4): 1259-1281. https://doi.org/10.1002/2017gc007152
      Becker, K. , Fisher, A. T. , 2000. Permeability of Upper Oceanic Basement on the Eastern Flank of the Juan de Fuca Ridge Determined with Drill-String Packer Experiments. Journal of Geophysical Research: Solid Earth, 105(B1): 897-912. https://doi.org/10.1029/1999jb900250
      Coumou, D. , Driesner, T. , Heinrich, C. A. , 2008. The Structure and Dynamics of Mid-Ocean Ridge Hydrothermal Systems. Science, 321(5897): 1825-1828. https://doi.org/10.1126/science.1159582
      Driesner, T. , 2010. The Interplay of Permeability and Fluid Properties as a First Order Control of Heat Transport, Venting Temperatures and Venting Salinities at Mid-Ocean Ridge Hydrothermal Systems. Geofluids, 10: 132-141. https://doi.org/10.1111/j.1468-8123.2009.00273.x
      Elderfield, H. , Schultz, A. , 1996. Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean. Annual Review of Earth and Planetary Sciences, 24(1): 191-224. https://doi.org/10.1146/annurev.earth.24.1.191
      Fontaine, F. J. , Cannat, M. , Escartin, J. , et al. , 2014. Along-Axis Hydrothermal Flow at the Axis of Slow Spreading Mid-Ocean Ridges: Insights from Numerical Models of the Lucky Strike Vent Field (MAR). Geochemistry, Geophysics, Geosystems, 15(7): 2918-2931. https://doi.org/10.1002/2014gc005372
      Fontaine, F. J. , Rabinowicz, M. , Boulègue, J. , 2001. Permeability Changes Due to Mineral Diagenesis in Fractured Crust: Implications for Hydrothermal Circulation at Mid-Ocean Ridges. Earth and Planetary Science Letters, 184(2): 407-425. https://doi.org/10.1016/s0012-821x(00)00332-0
      German, C. R., Seyfried, J. W. E., 2014. Hydrothermal Processes. In: Schubert, G., ed., Treatise on Geochemistry. Elsevier, Amsterdam. 191-233. https://doi.org/10.1016/b978-0-08-095975-7.00607-0
      Guo, Q. H. , Liu, M. L. , Li, J. X. , 2017. Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science, 42(2): 286-297(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201702010.htm
      Hannington, M. , Harðardóttir, V. , Garbe-Schönberg, D. , et al. , 2016. Gold Enrichment in Active Geothermal Systems by Accumulating Colloidal Suspensions. Nature Geoscience, 9(4): 299-302. https://doi.org/10.1038/ngeo2661
      Hannington, M. D., de Ronde, C. E. J., Petersen, S., 2005. Sea-Floor Tectonics and Submarine Hydrothermal Systems. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists. https://doi.org/10.5382/av100.06
      Hannington, M. D., Galley, A. G., Herzig, P. M., et al., 1998. Comparison of the TAG Mound and Stockwork Complex with Cyprus-Type, Massive Sulfide Deposits. In: Herzig, P. M., Humphris, S. E., Miller, D. J., eds., Proceedings of the Ocean Drilling Program. Ocean Drilling Program, Texas. https://doi.org/10.2973/odp.proc.sr.158.217.1998
      Hasenclever, J. , Theissen-Krah, S. , Rüpke, L. H. , et al. , 2014. Hybrid Shallow On-Axis and Deep Off-Axis Hydrothermal Circulation at Fast-Spreading Ridges. Nature, 508(7497): 508-512. https://doi.org/10.1038/nature13174
      Ingebritsen, S. E. , Geiger, S. , Hurwitz, S. , et al. , 2010. Numerical Simulation of Magmatic Hydrothermal Systems. Reviews of Geophysics, 48(1): RG1002. https://doi.org/10.1029/2009rg000287
      Ingebritsen, S. E. , Manning, C. E. , 2010. Permeability of the Continental Crust: Dynamic Variations Inferred from Seismicity and Metamorphism. Geofluids, 10(1-2): 193-205. https://doi.org/10.1111/j.1468-8123.2010.00278.x
      Jupp, T. , Schultz, A. , 2000. A Thermodynamic Explanation for Black Smoker Temperatures. Nature, 403(6772): 880-883. https://doi.org/10.1038/35002552
      Kawada, Y. , Yoshida, S. , 2010. Formation of a Hydrothermal Reservoir Due to Anhydrite Precipitation in an Arc Volcano Hydrothermal System. Journal of Geophysical Research: Solid Earth, 115(B11): B11106. https://doi.org/10.1029/2010jb007708
      Kulik, D. A. , Wagner, T. , Dmytrieva, S. V. , et al. , 2013. GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes. Computational Geosciences, 17(1): 1-24. https://doi.org/10.1007/s10596-012-9310-6
      Li, H. M. , Zhai, S. K. , Yu, Z. H. , 2008. Fluid Evolution Model of the Atlantic TAG Hydrothermal Activity Area. Scientia Sinica Terrae, 38(9): 1136-1145(in Chinese).
      Li, J. , Sun, Z. L. , Huang, W. , et al. , 2014. Modern Seafloor Hydrothermal Processes and Mineralization. Earth Science, 39(3): 312-324(in Chinese with English abstract). http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Earth%20Science&atitle=Modern%20Seafloor%20Hydrothermal%20Processes%20and%20Mineralization
      Li, J. X. , Guo, Q. H. , Yu, Z. Y. , 2017. Impact of Clay Mineral Formation in High-Temperature Geothermal System on Accuracy of Na-K and K-Mg Geothermometers. Earth Science, 42(1): 142-154(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201701012.htm
      Liu, K. J. , Huang, F. , Gao, S. , et al. , 2018. Characteristics and Research Significance of Polymorphic Pyrite in Logatchev Hydrothermal Area, North Atlantic. Earth Science, 43(5): 1562-1573(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201805018.htm
      Lowell, R. P. , Farough, A. , Germanovich, L. N. , et al. , 2012. A Vent-Field-Scale Model of the East Pacific Rise 9°50'N Magma-Hydrothermal System. Oceanography, 25(1): 158-167. https://doi.org/10.5670/oceanog.2012.13
      Lowell, R. P. , Farough, A. , Hoover, J. , et al. , 2013. Characteristics of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers. Geochemistry, Geophysics, Geosystems, 14(6): 1756-1770. https://doi.org/10.1002/ggge.20109
      Lowell, R. P. , Gosnell, S. , Yang, Y. , 2007. Numerical Simulations of Single-Pass Hydrothermal Convection at Mid-Ocean Ridges: Effects of the Extrusive Layer and Temperature-Dependent Permeability. Geochemistry, Geophysics, Geosystems, 8(10): Q10011. https://doi.org/10.1029/2007gc001653
      Lowell, R. P. , Yao, Y. F. , Germanovich, L. N. , 2003. Anhydrite Precipitation and the Relationship between Focused and Diffuse Flow in Seafloor Hydrothermal Systems. Journal of Geophysical Research: Solid Earth, 108(B9): 2424. https://doi.org/10.1029/2002jb002371
      Mezon, C. , Mourzenko, V. V. , Thovert, J. F. , et al. , 2018. Thermal Convection in Three-Dimensional Fractured Porous Media. Physical Review E, 97(1): 013106. https://doi.org/10.1103/physreve.97.013106
      Pierre, S. , Gysi, A. P. , Monecke, T. , 2018. Fluid Chemistry of Mid-Ocean Ridge Hydrothermal Vents: A Comparison between Numerical Modeling and Vent Geochemical Data. Geofluids, 1-20. https://doi.org/10.1155/2018/1389379
      Sleep, N. H. , 1991. Hydrothermal Circulation, Anhydrite Precipitation, and Thermal Structure at Ridge Axes. Journal of Geophysical Research: Solid Earth, 96(B2): 2375-2387. https://doi.org/10.1029/90jb02335
      Syverson, D. D. , Scheuermann, P. , Higgins, J. A. , et al. , 2018. Experimental Partitioning of Ca Isotopes and Sr into Anhydrite: Consequences for the Cycling of Ca and Sr in Subseafloor Mid-Ocean Ridge Hydrothermal Systems. Geochimica et Cosmochimica Acta, 236: 160-178. https://doi.org/10.1016/j.gca.2018.03.018
      Tao, C. H. , Lin, J. , Guo, S. Q. , et al. , 2012. First Active Hydrothermal Vents on an Ultraslow-Spreading Center: Southwest Indian Ridge. Geology, 40(1): 47-50. https://doi.org/10.1130/g32389.1
      Tivey, M. K. , 2007. Generation of Seafloor Hydrothermal Vent Fluids and Associated Mineral Deposits. Oceanography, 20(1): 50-65. https://doi.org/10.5670/oceanog.2007.80
      Tivey, M. K. , Humphris, S. E. , Thompson, G. , et al. , 1995. Deducing Patterns of Fluid Flow and Mixing within the TAG Active Hydrothermal Mound Using Mineralogical and Geochemical Data. Journal of Geophysical Research: Solid Earth, 100(B7): 12527-12555. https://doi.org/10.1029/95jb00610
      Tivey, M. K. , McDuff, R. E. , 1990. Mineral Precipitation in the Walls of Black Smoker Chimneys: A Quantitative Model of Transport and Chemical Reaction. Journal of Geophysical Research: Solid Earth, 95(B8): 12617-12637. https://doi.org/10.1029/jb095ib08p12617
      Wagner, W. , Pruß, A. , 2002. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical and Chemical Reference Data, 31(2): 387-535. https://doi.org/10.1063/1.1461829
      Wang, S. J. , Zhai, S. K. , Yu, Z. H. , et al. , 2018. Reflections on Model of Modern Seafloor Hydrothermal System. Earth Science, 43(3): 835-850(in Chinese with English abstract). http://www.researchgate.net/publication/325084055_Reflections_on_Model_of_Modern_Seafloor_Hydrothermal_System
      Weis, P. , Driesner, T. , Heinrich, C. A. , 2012. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts within Dynamic Fluid Plumes. Science, 338(6114): 1613-1616. https://doi.org/10.1126/science.1225009
      Xi, Z. Z. , Li, R. X. , Song, G. , et al. , 2016. Electrical Structure of Sea-Floor Hydrothermal Sulfide Deposits. Earth Science, 41(8): 1395-1401(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201608011.htm
      Xu, T. F. , Sonnenthal, E. , Spycher, N. , et al. , 2006. TOUGHREACT-A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media: Applications to Geothermal Injectivity and CO2 Geological Sequestration. Computers & Geosciences, 32(2): 145-165. https://doi.org/10.1016/j.cageo.2005.06.014
      Yapparova, A. , Gabellone, T. , Whitaker, F. , et al. , 2017. Reactive Transport Modelling of Dolomitisation Using the New CSMP++GEM Coupled Code: Governing Equations, Solution Method and Benchmarking Results. Transport in Porous Media, 117(3): 385-413. https://doi.org/10.1007/s11242-017-0839-7
      Yu, X. , Chu, F. Y. , Dong, Y. H. , et al. , 2013. Detachment Fault and Oceanic Core Complex: A New Mode of Seafloor Spreading. Earth Science, 38(5): 995-1004(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201305011.htm
      Zhao, X. F. , Li, Z. K. , Zhao, S. R. , et al. , 2019. Early Cretaceous Regional-Scale Magmatic-Hydrothermal Metallogenic System at the Southern Margin of the North China Carton. Earth Science, 44(1): 52-68(in Chinese with English abstract). http://www.researchgate.net/publication/332034266_Early_Cretaceous_Regional-Scale_Magmatic-Hydrothermal_Metallogenic_System_at_the_Southern_Margin_of_the_North_China_Carton
      郭清海, 刘明亮, 李洁祥, 2017. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因. 地球科学, 42(2): 286-297. doi: 10.3799/dqkx.2017.021
      李怀明, 翟世奎, 于增慧, 2008. 大西洋TAG热液活动区流体演化模式. 中国科学: 地球科学, 38(9): 1136-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200809010.htm
      李军, 孙治雷, 黄威, 等, 2014. 现代海底热液过程及成矿. 地球科学, 39(3): 312-324. doi: 10.3799/dqkx.2014.030
      李洁祥, 郭清海, 余正艳, 2017. 高温地热系统中粘土矿物形成对Na-K和K-Mg地球化学温标准确性的影响. 地球科学, 42(1): 142-154. doi: 10.3799/dqkx.2017.011
      刘开君, 黄菲, 高尚, 等, 2018. 北大西洋Logatchev热液区多形貌黄铁矿特征及其意义. 地球科学, 43(5): 1562-1573. doi: 10.3799/dqkx.2018.414
      王淑杰, 翟世奎, 于增慧, 等, 2018. 关于现代海底热液活动系统模式的思考. 地球科学, 43(3): 835-850. doi: 10.3799/dqkx.2018.907
      席振铢, 李瑞雪, 宋刚, 等, 2016. 深海热液金属硫化物矿电性结构. 地球科学, 41(8): 1395-1401. doi: 10.3799/dqkx.2016.110
      余星, 初凤友, 董彦辉, 等, 2013. 拆离断层与大洋核杂岩: 一种新的海底扩张模式. 地球科学, 38(5): 995-1004. doi: 10.3799/dqkx.2013.097
      赵新福, 李占轲, 赵少瑞, 等, 2019. 华北克拉通南缘早白垩世区域大规模岩浆-热液成矿系统. 地球科学, 44(1): 52-68. doi: 10.3799/dqkx.2018.372
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (1540) PDF downloads(88) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return