• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 3
    Mar.  2020
    Turn off MathJax
    Article Contents
    Ren Huan, Zheng Youye, Wu Song, Zhang Xin, Ye Jiwen, Chen Xuedong, 2020. Short-Wavelength Infrared Characteristics and Indications of Exploration of the Demingding Copper-Molybdenum Deposit in Tibet. Earth Science, 45(3): 930-944. doi: 10.3799/dqkx.2019.983
    Citation: Ren Huan, Zheng Youye, Wu Song, Zhang Xin, Ye Jiwen, Chen Xuedong, 2020. Short-Wavelength Infrared Characteristics and Indications of Exploration of the Demingding Copper-Molybdenum Deposit in Tibet. Earth Science, 45(3): 930-944. doi: 10.3799/dqkx.2019.983

    Short-Wavelength Infrared Characteristics and Indications of Exploration of the Demingding Copper-Molybdenum Deposit in Tibet

    doi: 10.3799/dqkx.2019.983
    • Received Date: 2019-10-30
    • Publish Date: 2020-03-15
    • The ore exploration of Demingding mining area of the Gangdese metallogenic belt has been challenging due to inconvenient transportation,high altitude and lack of oxygen,strong physical weathering and cover of the crushed stone. In order to further guide the field mineral exploration,we carried out systematic short-wave infrared spectroscopy analysis based on detailed field observation and cataloging. The scalars of sericite minerals in the short-wave infrared spectrum show a regular change in space. From the concentration center to periphery,the absorption peak wavelength of the Al-OH (Pos2200) gradually becomes longer,the depth of the Al-OH absorption peak (Dep2200) gradually decreases,and the SWIR-IC value gradually becomes smaller. And the three zones are well fitted,which indicates that the temperature of the altered sericite minerals formation is higher and the pressure is higher in the region. Combined with the zircon U-Pb age and the molybdenite Re-Os isotopic age in the ore-forming rocks,we estimate an exploration target area in the mining area where the late copper mineralization overlaps with the early (copper) molybdenum mineralization. Short-wave infrared spectroscopy can quickly and effectively guide mineral exploration and reduce exploration costs. Therefore,it can be used as one of the important methods for prospecting and evaluation of western special landscape areas.

       

    • loading
    • Alva Jimenez, T. R., 2011. Variation in Hydrothermal Muscovite and Chlorite Composition in the Highland Valley Porphyry Cu-Mo District, British Columbia, Canada (Dissertation). The University of British Columbia, Vancouver.
      Chang, Z. S., Hedenquist, J. W., White, N. C., et al., 2011. Exploration Tools for Linked Porphyry and Epithermal Deposits: Example from the Mankayan Intrusion- Centered Cu-Au District, Luzon, Philippines. Economic Geology, 106(8): 1365-1398. https://doi.org/10.2113/econgeo.106.8.1365
      Chen, S.B., Huang, B.Q., Li, C., et al., 2018. Alteration and Mineralization of the Yuhai Cu Deposit in Eastern Tianshan, Xinjiang and Applications of Short Wavelength Infra-Red (SWIR) in Exploration. Earth Science, 43(9): 2911-2928 (in Chinese with English abstract).
      Duke, E. F., 1994. Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress: Implications for Remote Sensing. Geology, 22(7): 621-624. https://doi.org/10.1130/0091-7613(1994)0220621:nisomt > 2.3.co; 2 doi: 10.1130/0091-7613(1994)0220621:nisomt>2.3.co;2
      Feng, Y. Z., Xiao, B., Li, R. C., et al., 2019. Alteration Mapping with Short Wavelength Infrared (SWIR) Spectroscopy on Xiaokelehe Porphyry Cu-Mo Deposit in the Great Xing'an Range, NE China: Metallogenic and Exploration Implications. Ore Geology Reviews, 112: 103062. https://doi.org/10.1016/j.oregeorev.2019.103062
      Gan, F.P., Wang, R.S., Yang, S.M., 2002. Studying on the Alteration Minerals Identification Using Hyperion Data. Remote Sensing for Land & Resources, 14(4): 44-50 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg200204010
      Graham, G. E., Kokaly, R. F., Kelley, K. D., et al., 2018. Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range. Economic Geology, 113(2): 489-510. https://doi.org/10.5382/econgeo.2018.4559
      Guo, N., Thomas, C., Tang, J. X., et al., 2017. Mapping White Mica Alteration Associated with the Jiama Porphyry-Skarn Cu Deposit, Central Tibet Using Field SWIR Spectrometry. Ore Geology Reviews, 108: 147-157. https://doi.org/10.1016/j.oregeorev.2017.07.027
      Han, J. S., Chu, G. B., Chen, H. Y., et al., 2018. Hydrothermal Alteration and Short Wavelength Infrared (SWIR) Characteristics of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Yangtze Craton, Eastern China. Ore Geology Reviews, 101: 143-164. https://doi.org/10.1016/j.oregeorev.2018.07.018
      Harraden, C. L., McNulty, B. A., Gregory, M. J., et al., 2013. Shortwave Infrared Spectral Analysis of Hydrothermal Alteration Associated with the Pebble Porphyry Copper-Gold-Molybdenum Deposit, Iliamna, Alaska. Economic Geology, 108(3): 483-494. https://doi.org/10.2113/econgeo.108.3.483
      Herrmann, W., Blake, M., Doyle, M., et al., 2001. Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5): 939-955. https://doi.org/10.2113/96.5.939
      Hou, Z. Q., Yang, Z. M., Lu, Y. J., et al., 2015. A Genetic Linkage between Subduction- and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/g36362.1
      Huang, Y.R., Guo, N., Zheng, L., et al., 2017. 3D Geological Alteration Mapping Based on Remote Sensing and Shortwave Infrared Technology: A Case Study of the Sinongduo Low-Sulfidation Epithermal Deposit. Acta Geoscientica Sinica, 38(5): 779-789 (in Chinese with English abstract).
      Jones, S., Herrnumn, W., Gemmell, J.B., 2005. Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100(2): 273-294. https://doi.org/10.2113/100.2.273
      Laakso, K., Peter, J. M., Rivard, B., et al., 2016. Short-Wave Infrared Spectral and Geochemical Characteristics of Hydrothermal Alteration at the Archean Izok Lake Zn-Cu-Pb-Ag Volcanogenic Massive Sulfide Deposit, Nunavut, Canada: Application in Exploration Target Vectoring. Economic Geology, 111(5): 1223-1239. https://doi.org/10.2113/econgeo.111.5.1223
      Lang, X.H., Tang, J.X., Chen, Y.C., et al., 2012. Neo-Tethys Mineralization on the Southern Margin of the Gangdise Metallogenic Belt, Tibet, China: Evidence from Re-Os Ages of Xiongcun Orebody No.Ⅰ. Earth Science, 37(3): 515-525 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201203012
      Liang, S.N., Gan, F.P., Yan, B.K., et al., 2012. Relationship between Composition and Spectral Feature of Muscovite. Remote Sensing for Land & Resources, 24(3): 111-115 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201203020
      Liu, H., Ma, Y., Ren, H., et al., 2015. Short-Wave Infrared Spectroscopy Study on Wallrock Alteration of the Tiemaoshan Porphyry Molybdenum Deposit, Fujian Province, China. Acta Mineralogica Sinica, 35(2): 221-228 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201502017
      Neal, L. C., Wilkinson, J. J., Mason, P. J., et al., 2018. Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits. Journal of Geochemical Exploration, 184: 179-198. https://doi.org/10.1016/j.gexplo.2017.10.019
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      Pontual, S., Merry, N., Gamson, P., 1997. Spectral Interpretation Field Manual. AusSpec International Pty Ltd., Brisbane.
      Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      Sun, S.Q., Chen, H.Y., Jin, S.G., et al., 2019. Geochemical Study and Exploration Application of Altered Minerals in Southeast Hubei Mining Area. Science Press, Beijing (in Chinese).
      Tappert, M., Rivard, B., Giles, D., et al., 2011. Automated Drill Core Logging Using Visible and Near-Infrared Reflectance Spectroscopy: A Case Study from the Olympic Dam IOCG Deposit, South Australia. Economic Geology, 106(2): 289-296. https://doi.org/10.2113/econgeo.106.2.289
      Thompson, A.J.B., Phoebe, L.H., Audrey, J.R., 1999. Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy. Society of Economic Geologists' Newsletter, 39: 1-27.
      Tian, F., Leng, C.B., Zhang, X.C., et al., 2019. Application of Short-Wave Infrared Spectroscopy in Gangjiang Porphyry Cu-Mo Deposit in Nimu Ore Field, Tibet. Earth Science, 44(6): 2143-2154 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201906027
      Tian, J., Zhang, Y., Cheng, J. M., et al., 2019. Short Wavelength Infra-Red (SWIR) Characteristics of Hydrothermal Alteration Minerals in Skarn Deposits: Example from the Jiguanzui Cu-Au Deposit, Eastern China. Ore Geology Reviews, 106: 134-149. https://doi.org/10.1016/j.oregeorev.2019.01.025
      Wang, J.R., Lü, X.B., Huang, Z.Q., et al., 2017. A Study of Near-Infrared Spectroscopy on Altered Minerals in the Nuri Copper-Polymetallic Deposit, Tibet. Geology and Exploration, 53(1): 141-150 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201701014
      Wu, S., Zheng, Y. Y., Sun, X., 2016. Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet. Ore Geology Reviews, 73: 83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023
      Wu, S., Zheng, Y. Y., Sun, X., et al., 2014. Origin of the Miocene Porphyries and Their Mafic Microgranular Enclaves from Dabu Porphyry Cu-Mo Deposit, Southern Tibet: Implications for Magma Mixing/Mingling and Mineralization. International Geology Review, 56(5): 571-595. https://doi.org/10.1080/00206814.2014.880074
      Xia, L.Q., Ma, Z.P., Li, X.M., et al., 2009. Paleocene-Early Eocene (65-40 Ma) Volcanic Rocks in Tibetan Plateau: The Products of Syn-Collisional Volcanism. Northwestern Geology, 42(3): 1-25 (in Chinese with English abstract).
      Xu, C., Chen, H. Y., White, N., et al., 2017. Alteration and Mineralization of Xi'nan Cu-Mo Ore Deposit in Zijinshan Orefield, Fujian Province, and Application of Short Wavelength Infra-Red Technology (SWIR) to Exploration. Mineral Deposits, 36(5): 1013-1038 (in Chinese with English abstract).
      Yang, K., Huntington, J. F., Gemmell, J. B., et al., 2011. Variations in Composition and Abundance of White Mica in the Hydrothermal Alteration System at Hellyer, Tasmania, as Revealed by Infrared Reflectance Spectroscopy. Journal of Geochemical Exploration, 108(2): 143-156. https://doi.org/10.1016/j.gexplo.2011.01.001
      Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2012. Application of Short Wavelength infrared (SWIR) Technique in Exploration of Poorly Eroded Porphyry Cu District: A Case Study of Niancun Ore District, Tibet. Mineral Deposits, 31(4): 699-717 (in Chinese with English abstract).
      Ye, F.W., Meng, S., Zhang, C., et al., 2018. Minerageny Study of High-Al, Medium-Al- and Low-Al Sericites Identified by Airborne Hyperspectral Remote Sensing Technology. Acta Geologica Sinica, 92(2): 395-412 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201802013
      Zhang, G.Y., Zheng, Y.Y., Gong, F.Z., et al., 2008. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Jiru Porphyry Copper Deposit, Tibet, Associated with Continent-Continent Collisional Process. Acta Petrologica Sinica, 24(3): 473-479 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200803007
      Zhang, J.Z., 2013. Geology, Exploration Model and Practice of Zijinshan Ore Concentrated Area. Mineral Deposits, 32(4): 758-767 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201304009
      Zhang, S.T., Chen, H.Y., Zhang, X.B., et al., 2017. Application of Short Wavelength Infrared (SWIR) Technique to Exploration of Skarn Deposit: A Case Study of Tonglvshan Cu-Fe-Au Deposit, Edongnan (Southeast Hubei) Ore Concentration Area. Mineral Deposits, 36(6): 1263-1288 (in Chinese with English abstract).
      Zhao, L.Q., Deng, J., Yuan, H.T., et al., 2008. Short Wavelength Infrared Spectral Analysis of Alteration Zone in the Taishang Gold Deposit. Geology and Prospecting, 44(5): 58-63 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt200805010
      Zheng, Y.Y., Gao, S.B., Cheng, L.J., et al., 2004. Finding and Significances of Chongjiang Porphyry Copper (Molybdenum, Aurum) Deposit, Tibet. Earth Science, 29(3): 333-339 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200403012
      Zheng, Y.Y., Gao, S.B., Fan, Z.H., et al., 2005. Major Breakthroughs and Enlightenment of Geochemical Exploration Information and Scientific Prospecting: Examples of Multiple Large and Ultra-Large Porphyry Copper Deposits Discovered in Tibet in Recent Years. The Sixth World Chinese Geological Science Symposium and the 2005 Annual Conference of Geological Society of China, Chifeng (in Chinese).
      Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029
      Zheng, Y.Y., Xue, Y.X., Cheng, L.J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science, 29(1): 103-108 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200401018
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024
      陈寿波, 黄宝强, 李琛, 等, 2018.新疆东天山玉海铜矿蚀变矿化特征及SWIR勘查应用研究.地球科学, 43(9): 2911-2928. doi: 10.3799/dqkx.2018.156
      甘甫平, 王润生, 杨苏明, 2002.西藏Hyperion数据蚀变矿物识别初步研究.国土资源遥感, 14(4): 44-50. doi: 10.3969/j.issn.1001-070X.2002.04.010
      黄一入, 郭娜, 郑龙, 等, 2017.基于遥感短波红外技术的三维蚀变填图——以低硫化浅成低温热液型矿床斯弄多为例.地球学报, 38(5): 779-789. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705017
      郎兴海, 唐菊兴, 陈毓川, 等, 2012.西藏冈底斯成矿带南缘新特提斯洋俯冲期成矿作用:来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据.地球科学, 37(3): 515-525. http://www.earth-science.net/article/id/2255
      梁树能, 甘甫平, 闫柏锟, 等, 2012.白云母矿物成分与光谱特征的关系研究.国土资源遥感, 24(3): 111-115. doi: 10.6046/gtzyyg.2012.03.20
      刘鹤, 马宇, 任宏, 等, 2015.福建铁帽山钼矿床围岩蚀变的短波红外光谱学研究.矿物学报, 35(2): 221-228. http://d.old.wanfangdata.com.cn/Periodical/kwxb201502017
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      孙四权, 陈华勇, 金尚刚, 等, 2019.鄂东南矿集区蚀变矿物地球化学研究及其勘查应用.北京:科学出版社.
      田丰, 冷成彪, 张兴春, 等, 2019.短波红外光谱技术在西藏尼木地区岗讲斑岩铜-钼矿床中的应用.地球科学, 44(6): 2143-2154. doi: 10.3799/dqkx.2018.373
      王锦荣, 吕新彪, 黄照强, 等, 2017.西藏努日铜多金属矿床蚀变矿物的近红外光谱学研究.地质与勘探, 53(1): 141-150. http://d.old.wanfangdata.com.cn/Periodical/dzykt201701014
      夏林圻, 马中平, 李向民, 等, 2009.青藏高原古新世-始新世早期(65~40 Ma)火山岩:同碰撞火山作用的产物.西北地质, 42(3): 1-25. doi: 10.3969/j.issn.1009-6248.2009.03.001
      许超, 陈华勇, White, N., 等, 2017.福建紫金山矿田西南铜钼矿段蚀变矿化特征及SWIR勘查应用研究.矿床地质, 36(5): 1013-1038. http://d.old.wanfangdata.com.cn/Periodical/kcdz201705001
      杨志明, 侯增谦, 杨竹森, 等, 2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用:以西藏念村矿区为例.矿床地质, 31(4): 699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004
      叶发旺, 孟树, 张川, 等, 2018.航空高光谱识别的高、中、低铝绢云母矿物成因学研究.地质学报, 92(2): 395-412. doi: 10.3969/j.issn.0001-5717.2018.02.013
      张刚阳, 郑有业, 龚福志, 等, 2008.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束.岩石学报, 24(3): 473-479. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803007
      张锦章, 2013.紫金山矿集区地质特征、矿床模型与勘查实践.矿床地质, 32(4): 758-767. http://d.old.wanfangdata.com.cn/Periodical/kcdz201304009
      张世涛, 陈华勇, 张小波, 等, 2017.短波红外光谱技术在矽卡岩型矿床中的应用:以鄂东南铜绿山铜铁金矿床为例.矿床地质, 36(6): 1263-1288. http://d.old.wanfangdata.com.cn/Periodical/kcdz201706002
      赵利青, 邓军, 原海涛, 等, 2008.台上金矿床蚀变带短波红外光谱研究.地质与勘探, 44(5): 58-63. doi: 10.3969/j.issn.1001-1986.2008.05.015
      郑有业, 高顺宝, 程力军, 等, 2004.西藏冲江大型斑岩铜(钼金)矿床的发现及意义.地球科学, 29(3): 333-339. doi: 10.3321/j.issn:1000-2383.2004.03.012
      郑有业, 高顺宝, 樊子珲, 等, 2005.化探信息与科学找矿的重大突破和启示——以西藏近年发现的多个大-超大型斑岩铜矿为例.赤峰: 第六届世界华人地质科学研讨会和中国地质学会二零零五年学术年会.
      郑有业, 薛迎喜, 程力军, 等, 2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学, 29(1): 103-108. doi: 10.3321/j.issn:1000-2383.2004.01.018
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(1)

      Article views (5023) PDF downloads(113) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return