• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Yu Mingyu, Yu Changqing, Qu Chen, Wang Qi, Zeng Xiangzhi, Tian Zhenyu, Zheng Xiaojie, 2021. Deep Structural Characteristics of Pengguan Complex in Longmenshan Fault Zone Derived from Seismic Reflective Profile. Earth Science, 46(5): 1737-1748. doi: 10.3799/dqkx.2020.020
    Citation: Yu Mingyu, Yu Changqing, Qu Chen, Wang Qi, Zeng Xiangzhi, Tian Zhenyu, Zheng Xiaojie, 2021. Deep Structural Characteristics of Pengguan Complex in Longmenshan Fault Zone Derived from Seismic Reflective Profile. Earth Science, 46(5): 1737-1748. doi: 10.3799/dqkx.2020.020

    Deep Structural Characteristics of Pengguan Complex in Longmenshan Fault Zone Derived from Seismic Reflective Profile

    doi: 10.3799/dqkx.2020.020
    • Received Date: 2020-06-11
    • Publish Date: 2021-05-15
    • Pengguan complex is located in the middle part of Longmenshan fault zone, which is an important part of Longmenshan regional tectonics. In this paper, the deep seismic reflection profile through the long axis of Pengguan complex is analyzed and interpreted, and the deep structural characteristics and formation mechanism of Pengguan complex are described. The analysis of seismic reflection profile shows that Pengguan complex is stratified in depth, with a bottom interface, and Pengguan complex shows rootless characteristics. Based on the analysis of its structural characteristics, it can be inferred that the in-situ rocks come from deeper and more western locations. The development of faults in the shallow part of Pengguan complex is consistent with the surface fault system of Longmenshan Mountain, which indicates that the diagenesis time of Pengguan complex is earlier than that of Longmenshan tectonic movement. At the same time, the Yingxiu-Beichuan fault in the deep part of the section energy map develops stratified gaps in different stages of Pengguan complex rock mass, which means it did not destroy the deep structure of Pengguan complex main rock mass. Referring to lithology and diagenetic time, it is inferred that Pengguan complex originated from the Songpan block basement material which was upwelled by compression during the Indosinian movement, the basement magma upwelled several times during the plate movement, and was uplifted by stress nappe in the northwest direction during the Himalayan movement to its present position.

       

    • 致谢: 感谢本文编辑和审稿专家针对本文提出的建设性意见和建议,感谢中国地质科学院地质研究所李海兵研究员、崔君文研究员以及中国地震局赤峰地震台冯杨洋在本文研究过程中给予的指导和帮助,特此致谢!
    • Burchfiel, B. C., Chen, Z., Yupinc, L., et al., 1995. Tectonics of the Longmen Shan and Adjacent Regions, Central China. International Geology Review, 37(8): 661-735. https://doi.org/10.1080/00206819509465424
      Clark, M. K., Royden, L. H., 2000. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology, 28(8): 703-706. https://doi.org/10.1130/0091-7613(2000)28703:tobtem>2.0.co;2 doi: 10.1130/0091-7613(2000)28703:tobtem>2.0.co;2
      Cui, J. W., Lin, W. R., Wang, L. J., et al., 2014. Determination of Three-Dimensional In Situ Stresses by Anelastic Strain Recovery in Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 619/620: 123-132. https://doi.org/10.1016/j.tecto.2013.09.013
      Feng, Y. Y., Yu, C. Q., Fan, Z. G., et al., 2016. Fine Crustal Structure of the Lushan Area Derived from Seismic Reflection Profiling. Chinese Journal of Geophysics, 59(9): 3248-3259 (in Chinese with English abstract).
      Gao, Y., Shi, Y. T., Chen, A. G., 2018. Crustal Seismic Anisotropy and Compressive Stress in the Eastern Margin of the Tibetan Plateau and the Influence of the Ms8.0 Wenchuan Earthquake. Chinese Science Bulletin, 63(19): 1934-1948 (in Chinese). doi: 10.1360/N972018-00317
      Gao, Y., Wang, Q., Zhao, B., et al., 2013. A Rupture Blank Zone in Middle South Part of Longmenshan Faults: Effect after Lushan Ms7.0 Earthquake of 20 April 2013 in Sichuan, China. Science in China (Series D: Earth Sciences), 43(6): 1038-1046 (in Chinese). doi: 10.1007/s11430-014-4827-2
      Hu, Y. X., Liu, X. R., Xu, H., et al., 2010. Multiple Linear Regression Models to Predict the Uniaxial Compressive Strength and the Elastic Modulus of Pengguan Complex. Journal of Geotechnical Investigation & Surveying, 38(12): 15-21 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GCKC201012006.htm
      Hubbard, J., Shaw, J. H., 2009. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M = 7.9) Earthquake. Nature, 458(7235): 194-197. https://doi.org/10.1038/nature07837
      Jia, S. X., Liu, B. J., Xu, Z. F., et al., 2014. The Crustal Structures of the Central Longmenshan along and Its Margins as Related to the Seismotectonics of the 2008 Wenchuan Earthquake. Science in China (Series D: Earth Sciences), 44(3): 497-509 (in Chinese). doi: 10.1007/s11430-013-4744-9
      Kong, L. Y., Mao, X. W., Chen, C., et al., 2017. Chronological Study on Detrital Zircons and Its Geological Significance from Mesoproterozoic Dagushi Group in the Dahongshan Area, North Margin of the Yangtze Block. Earth Science, 42(4): 485-501 (in Chinese with English abstract).
      Li, H. B., Wang, Z. X., Fu, X. F., et al., 2009. Slip Characteristics, Maximum Slip and Tectonic Significance of the Surface Rupture Zone of Wenchuan Earthquake (Ms 8.0) on 12 May 2008. Quaternary Research, 29(3): 387-402 (in Chinese with English abstract).
      Li, H., Xu, Z., Niu, Y., et al., 2014a. Structural and Physical Property Characterization in the Wenchuan Earthquake Fault Scientific Drilling Project -Hole 1 (WFSD-1). Tectonophysics, 619/620: 86-100. http://doi.org/10.1016/j.tecto.2013.08.022
      Li, Y., Li, H. B., Zhou, R. J., et al., 2014b. Crustal Thickening or Isostatic Rebound of Orogenic Wedge Deduced from Tectonostratigraphic Units in Indosinian Foreland Basin, Longmen Shan, China. Tectonophysics, 619/620: 1-12. https://doi.org/10.1016/j.tecto.2013.05.031
      Li, Y., Yan, Z. K., Liu, S. G., et al., 2014c. Migration of the Carbonate Ramp and Sponge Buildup Driven by the Orogenic Wedge Advance in the Early Stage (Carnian) of the Longmen Shan Foreland Basin, China. Tectonophysics, 619/620: 179-193. https://doi.org/10.1016/j.tecto.2013.11.011
      Lin, F., Yu, T., 1998. Microstructure and Deformation Condition of Tectonite in Suopodian Fracture Zone in Pengguan Complex. Acta Geologica Sichuan, 18(2): 18-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCDB802.003.htm
      Lin, J. H., Liu, C. P., 2009. Study on the Forming Model of Pengguan Complex of the Longmenshan Orogenic Belt. Petroleum Geology and Recovery Efficiency, 16(4): 41-43 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NMSH200819002.htm
      Lin, M. B., Ma, Y. W., 1995. A Discussion on the Tectonic Characteristics of Peng-Guan Complex in Longmen Mountains. Journal of Chengdu University of Technology, (1): 42-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG501.005.htm
      Liu, C. P., Lin, J. H., 2008. Study on the Forming Model of Pengguan Complex of the Longmenshan Orogenic Belt. Inner Mongolia Petrochemical Industry, 34(19): 1-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NMSH200819002.htm
      Ma, X. J., Wu, Z. L., Jiang, C. S., 2014. 'Repeating Earthquakes' Associated with the WFSD-1 Drilling Site. Tectonophysics, 619/620: 44-50. https://doi.org/10.1016/j.tecto.2013.07.017
      Ma, Y. W., Wang, G. Z., Hu, X. W., 1996. Tectonic Deformation of Pengguan Complex as a Nappe. Acta Geologica Sichuan, 16(2): 110-114 (in Chinese with English abstract).
      Ma, Y. W., Yang, J., 2001. Tectonic Deformation of the Nappe Tectonic in the Middle Longmen Mountains. Journal of Chengdu University of Technology, 28(3): 236-240 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200103003.htm
      Nadeau, R. M., McEvilly, T. V., 1999. Fault Slip Rates at Depth from Recurrence Intervals of Repeating Microearthquakes. Science, 285(5428): 718-721. https://doi.org/10.1126/science.285.5428.718
      Niu, L., Zhou, Y. S., Yao, W. M., et al., 2018. Experiments on the Strength of Pengguan Complex under High Temperature and High Pressure and Its Implication to Seismogenic Mechanism of the Wenchuan Earthquake. Chinese Journal of Geophysics, 61(5): 1728-1740 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201805006.htm
      Royden, L. H., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788
      Sibson, R. H., 1992. Implications of Fault-Valve Behaviour for Rupture Nucleation and Recurrence. Tectonophysics, 211(1-4): 283-293. https://doi.org/10.1016/0040-1951(92)90065-e
      Tao, X. F., 1992. The Microstructural Characteristics of Yingxiu Thrust Fault in Pen-Guan District, Sichuan. Journal of Chengdu University of Technology (Science & Technology Editon), (1): 18-24, T001 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG199201002.htm
      Wang, H., 2015. Study on Seismic Fault Mechanism of Longmen Shan Tectonic Belt (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Wang, X. B., Zhang, G., Fang, H., et al., 2014. Crust and Upper Mantle Resistivity Structure at Middle Section of Longmenshan, Eastern Tibetan Plateau. Tectonophysics, 619/620: 143-148. https://doi.org/10.1016/j.tecto.2013.09.011
      Wu, C., 2014. Deep Geological Structure of Longmen Shan Tectonic Belt and Its Restriction on Surface Rupture Zone of Wenchuan Earthquake (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Wu, C., Li, H. B., Leloup, P. H., et al., 2014. High-Angle Fault Responsible for the Surface Ruptures along the Northern Segment of the Wenchuan Earthquake Fault Zone: Evidence from the Latest Seismic Reflection Profiles. Tectonophysics, 619/620: 159-170. https://doi.org/10.1016/j.tecto.2013.09.015
      Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009. Coseismic Reverse- and Oblique-Slip Surface Faulting Generated by the 2008 Mw 7.9 Wenchuan Earthquake, China. Geology, 37(6): 515-518. https://doi.org/10.1130/g25462a.1
      Xue, Z. H., Martelet, G., Lin, W., et al., 2017. Mesozoic Crustal Thickening of the Longmenshan Belt (NE Tibet, China) by Imbrication of Basement Slices: Insights from Structural Analysis, Petrofabric and Magnetic Fabric Studies, and Gravity Modeling. Tectonics, 36(12): 3110-3134. https://doi.org/10.1002/2017tc004754
      Yang, S. F., Chen, H. L., Gong, G. H., et al., 2019. Sedimentary Characteristics and Basin-Orogen Processes of the Late Early Paleozoic Foreland Basins in the Lower Yangtze Region. Earth Science, 44(5): 1494-1510 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905008.htm
      Yang, Z. Y., Qiu, R. X., Qin, S. K., et al., 2009. The Proterozoic VMS Copper Deposit in Longmen Mountain Area of Chuanxi: Evidence from Sulphide Trace Element and Sulfur Isotope. Geological Science and Technology Information, 28(4): 59-64 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzkjqb200904010
      Yong, L., Allen, P. A., Densmore, A. L., et al., 2003. Evolution of the Longmen Shan Foreland Basin (Western Sichuan, China) during the Late Triassic Indosinian Orogeny. Basin Research, 15(1): 117-138. https://doi.org/10.1046/j.1365-2117.2003.00197.x
      Zhang, F. X., Wu, Q. J., Li, Y. H., et al., 2018. Seismic Tomography of Eastern Tibet: Implications for the Tibetan Plateau Growth. Tectonics, 37(9): 2833-2847. https://doi.org/10.1029/2018tc004977
      Zhang, P., Zhou, Z. Y., Xu, C. H., et al., 2008. Geochemistry of Pengguan Complex in the Longmenshan Region, Western Sichuan Province, SW China: Petrogenesis and Tectonic Implications. Geotectonica et Metallogenia, 32(1): 105-116 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200801015.htm
      Zhang, Z. M., Ding, H. X., Dong, X., et al., 2019. Two Contrasting Eclogite Types in the Himalayan Orogen and Differential Subduction of Indian Continent. Earth Science, 44(5): 1602-1619 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905016.htm
      冯杨洋, 于常青, 范柱国, 等, 2016. 从反射地震剖面中认识芦山地区的地壳精细结构和构造. 地球物理学报, 59(9): 3248-3259. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201609010.htm
      高原, 石玉涛, 陈安国, 2018. 青藏高原东缘地震各向异性、应力及汶川地震影响. 科学通报, 63(19): 1934-1948. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201819010.htm
      高原, 王琼, 赵博, 等, 2013. 龙门山断裂带中南段的一个破裂空段: 芦山地震的震后效应. 中国科学(D辑: 地球科学), 43(6): 1038-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306012.htm
      胡元鑫, 刘新荣, 徐慧, 等, 2010. 彭灌杂岩单轴抗压强度和弹性模量的多元线性回归预测模型. 工程勘察, 38(12): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201012006.htm
      嘉世旭, 刘保金, 徐朝繁, 等, 2014. 龙门山中段及两侧地壳结构与汶川地震构造. 中国科学(D辑: 地球科学), 44(3): 497-509. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201403010.htm
      孔令耀, 毛新武, 陈超, 等, 2017. 扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义. 地球科学, 42(4): 485-501. doi: 10.3799/dqkx.2017.039
      李海兵, 王宗秀, 付小方, 等, 2009. 2008年5月12日汶川地震(Ms8.0)地表破裂带的分震同震滑移特征、最大滑移量及构造意义. 第四纪研究, 29(3): 387-402. doi: 10.3969/j.issn.1001-7410.2009.03.001
      林仿, 余团, 1998. 龙门山彭灌杂岩体中梭坡店断裂带显微构造及变形环境分析. 四川地质学报, 18(2): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB802.003.htm
      林娟华, 刘春平, 2009. 龙门山造山带彭灌杂岩体形成模式. 油气地质与采收率, 16(4): 41-43. doi: 10.3969/j.issn.1009-9603.2009.04.012
      林茂炳, 马永旺, 1995. 论龙门山彭灌杂岩体的构造属性. 成都理工学院学报, (1): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG501.005.htm
      刘春平, 林娟华, 2008. 龙门山造山带彭灌杂岩体形成模式研究. 内蒙古石油化工, 34(19): 1-4. doi: 10.3969/j.issn.1006-7981.2008.19.001
      马永旺, 王国芝, 胡新伟, 1996. "彭灌杂岩"推覆体的构造变形特征. 四川地质学报, 16(2): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB602.004.htm
      马永旺, 杨尽, 2001. 龙门山中段推覆构造的变形特征. 成都理工学院学报, 28(3): 236-240. doi: 10.3969/j.issn.1671-9727.2001.03.003
      牛露, 周永胜, 姚文明, 等, 2018. 高温高压条件下彭灌杂岩的强度对汶川地震发震机制的启示. 地球物理学报, 61(5): 1728-1740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805006.htm
      陶晓风, 1992. 四川彭灌地区映秀断裂带的显微构造特征. 成都地质学院学报, (1): 18-24, T001. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG199201002.htm
      王焕, 2015. 龙门山构造带地震断裂机制研究(博士学位论文). 北京: 中国地质科学院.
      吴婵, 2014. 龙门山构造带深部地质结构及其对汶川地震地表破裂带的制约(博士学位论文). 北京: 中国地质科学院.
      杨树锋, 陈汉林, 龚根辉, 等, 2019. 下扬子地区早古生代晚期前陆盆地沉积特征与盆山过程. 地球科学, 44(5): 1494-1510. doi: 10.3799/dqkx.2019.973
      杨钻云, 邱仁轩, 秦术凯, 等, 2009. 川西龙门山地区元古代VMS铜矿床: 硫化物微量元素和硫同位素证据. 地质科技情报, 28(4): 59-64. doi: 10.3969/j.issn.1000-7849.2009.04.010
      张沛, 周祖翼, 许长海, 等, 2008. 川西龙门山彭灌杂岩地球化学特征: 岩石成因与构造意义. 大地构造与成矿学, 32(1): 105-116. doi: 10.3969/j.issn.1001-1552.2008.01.014
      张泽明, 丁慧霞, 董昕, 等, 2019. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲. 地球科学, 44(5): 1602-1619. doi: 10.3799/dqkx.2019.040
    • Relative Articles

    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (2809) PDF downloads(110) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return