Citation: | Ren Jingwei, Wang Tao, Chen Yulei, Wang Yan, Dong Yunxi, Du Shenmeng, Du Jinzhi, 2020. Research Status and Application Potential of CO2 Mineralization. Earth Science, 45(7): 2413-2425. doi: 10.3799/dqkx.2020.027 |
Al, T. A., Martin, C. J., Blowes, D. W., 2000. Carbonate-Mineral/Water Interactions in Sulfide-Rich Mine Tailings. Geochimica et Cosmochimica Acta, 64(23):3933-3948. https://doi.org/10.1016/s0016-7037(0)00483-x
|
Alexander, G., Mercedes Maroto-Valer, M., Gafarova-Aksoy, P., 2007. Evaluation of Reaction Variables in the Dissolution of Serpentine for Mineral Carbonation. Fuel, 86(1/2):273-281. https://doi.org/10.1016/j.fuel.2006.04.034
|
Bachu, S., Adams, J. J., 2003. Sequestration of CO2 in Geological Media in Response to Climate Change:Capacity of Deep Saline Aquifers to Sequester CO2 in Solution. Energy Conversion and Management, 44(20):3151-3175. https://doi.org/10.1016/s0196-8904(3)00101-8
|
Baciocchi, R., Polettini, A., Pomi, R., et al., 2006. CO2 Sequestration by Direct Gas-Solid Carbonation of Air Pollution Control (APC) Residues. Energy & Fuels, 20(5):1933-1940. https://doi.org/10.1021/ef060135b
|
Berndt, M. E., Allen, D. E., Seyfried, W. E., 1996. Reduction of CO2 during Serpentinization of Olivine at 300℃ and 500 Bar. Geology, 24(4):351. https://doi.org/10.1130/0091-7613(1996)024 < 0351:rocdso > 2.3.co; 2 doi: 10.1130/0091-7613(1996)024<0351:rocdso>2.3.co;2
|
Black, B. A., Gibson, S. A., 2019. Deep Carbon and the Life Cycle of Large Igneous Provinces. Elements, 15(5):319-324. https://doi.org/10.2138/gselements.15.5.319
|
Blencoe, J. G., Palmer, D. A., Beard, J. S. 2004. Carbonation of Calcium Silicates for Long-Term CO2 Sequestration. WO, 2004094043, 2004-11-04.
|
Brame, H. M. R., Martindale, R. C., Ettinger, N. P., et al., 2019. Stratigraphic Distribution and Paleoecological Significance of Early Jurassic (Pliensbachian-Toarcian) Lithiotid-Coral Reefal Deposits from the Central High Atlas of Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 514:813-837. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9aef4736c5a4e629fbb3c57ffaf85cb3
|
Broecker, W. S., Takahashi, T., Simpson, H. J., et al., 1979. Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget. Science, 206(4417):409-418. https://doi.org/10.1126/science.206.4417.409
|
Cui, X. Q., Bianchi, T. S., Savage, C., et al., 2016. Organic Carbon Burial in Fjords:Terrestrial Versus Marine Inputs. Earth and Planetary Science Letters, 451:41-50.
|
Cui, Z. D., Liu, D. A., Zeng, R. S., et al., 2010. Geological Sequestration of CO2 and China's Sustainable Development. China Population Resources and Environment, 20(3):9-13 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201003002
|
Daval, D., Sissmann, O., Menguy, N., et al., 2011. Influence of Amorphous Silica Layer Formation on the Dissolution Rate of Olivine at 90℃ and Elevated PCO2. Chemical Geology, 284(1/2):193-209. https://doi.org/10.1016/j.chemgeo.2011.02.021
|
Du, Y. K., Pang, F., Chen, K., et al., 2019. Experiment of Breaking Shale Using Supercritical Carbon Dioxide Jet. Earth Science, 44(11):3749-3756 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201911014
|
Elderfield, H., 2010. Seawater Chemistry and Climate. Science, 327(5969):1092-1093. https://doi.org/10.1126/science.1186769
|
Etheridge, D. M., Steele, L. P., Langenfelds, R. L., et al., 1996. Natural and Anthropogenic Changes in Atmospheric CO2 over the Last 1 000 Years from Air in Antarctic Ice and Firn. Journal of Geophysical Research:Atmospheres, 101(D2):4115-4128. https://doi.org/10.1029/95jd03410
|
Fang, Q., Hong, H. L., Zhao, L. L., et al., 2018. Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes. Earth Science, 43(3):753-769 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201803007
|
Fang, X. M., Galy, A., Yang, Y. B., et al., 2019. Paleogene Global Cooling-Induced Temperature Feedback on Chemical Weathering, as Recorded in the Northern Tibetan Plateau. Geology, 47(10):992-996. https://doi.org/10.1130/g46422.1
|
Gao, X., Meng, Y., Zhu, C., et al., 2011. Study on the Kinetics of Extracting Chrysotile with Ammonium Chloride. Carsologica Sinica, 30(4):472-478 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr201104020
|
Gao, X., Zhu, C., Zhao, L., 2012. Impact of Heat-Pretreatment on the Reactivity between Ammonium Chloride and Chrysotile. Geological Journal of China Universities, 18(2), 83-89 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201202009
|
Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., et al., 2007. Ex Situ Aqueous Mineral Carbonation. Environmental Science & Technology, 41(7):2587-2593. https://doi.org/10.1021/es0619253
|
Gislason, S. R., Oelkers, E. H., 2014. Carbon Storage in Basalt. Science, 344(6182):373-374. https://doi.org/10.1126/science.1250828
|
Goff, F., Lackner, K. S., 1998. Carbon Dioxide Sequestering Using Ultramaf Ic Rocks. Environmental Geosciences, 5(3):89-102. https://doi.org/10.1046/j.1526-0984.1998.08014.x
|
Han, Z., Hu, X. M., Kemp, D. B., et al., 2018. Carbonate-Platform Response to the Toarcian Oceanic Anoxic Event in the Southern Hemisphere:Implications for Climatic Change and Biotic Platform Demise. Earth and Planetary Science Letters, 489:59-71.
|
Hanchen, M., Prigiobbe, V., Baciocchi, R., et al., 2008. Precipitation in the Mg-Carbonate System-Effects of Temperature and CO2 Pressure. Chemical Engineering Science, 63(4):1012-1028. https://doi.org/10.1016/j.ces.2007.09.052
|
Hemmati, A., Shayegan, J., Sharratt, P., et al., 2014. Solid Products Characterization in a Multi-Step Mineralization Process. Chemical Engineering Journal, 252:210-219. https://doi.org/10.1016/j.cej.2014.04.112
|
Holloway, S., 1997. An Overview of the Underground Disposal of Carbon Dioxide. Energy Conversion and Management, 38:S193-S198. https://doi.org/10.1016/s0196-8904(96)00268-3
|
Houghton, J.T., Jenkins, G. J., Ephramus, J. J., 1992. Climate Change, the Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press, Cambrige, 200. https://doi.org/10.1016/S0021-9169(96)90059-8
|
Houghton, R. A., Hackler, J. L., Lawrence, K. T., 1999. The U.S. Carbon Budget:Contributions from Land-Use Change. Science, 285(5427):574-78. https://doi.org/10.1126/science.285.5427.574
|
Hovelmann, J., Putnis, C. V., Ruiz-Agudo, E., et al., 2012. Direct Nanoscale Observations of CO2 Sequestration during Brucite[Mg(OH)2] Dissolution. Environmental Science & Technology, 46(9):5253-5260. https://doi.org/10.1021/es300403n
|
Huijgen, W. J. J., Witkamp, G. J., Comans, R. N. J., 2006. Mechanisms of Aqueous Wollastonite Carbonation as a Possible CO2 Sequestration Process. Chemical Engineering Science, 61(13):4242-4251. https://doi.org/10.1016/j.ces.2006.01.048
|
Huntzinger, D. N., 2009. Carbon Dioxide Sequestration in Cement Kiln Dust through Miner Carbonation. Environmental Science & Technology, 43(6):1986-1992. https://doi.org/10.1021/es802910z
|
Huntzinger, D. N., Gierke, J. S., Sutter, L. L., et al., 2009. Mineral Carbonation for Carbon Sequestration in Cement Kiln Dust from Waste Piles. Journal of Hazardous Materials, 168(1):31-37. https://doi.org/10.1016/j.jhazmat.2009.01.122
|
Izumi, K., Kemp, D. B., Itamiya, S., et al., 2018. Sedimentary Evidence for Enhanced Hydrological Cycling in Response to Rapid Carbon Release during the Early Toarcian Oceanic Anoxic Event. Earth and Planetary Science Letters, 481:162-170. https://doi.org/10.1016/j.epsl.2017.10.030
|
Joos, F., 1994. Imbalance in the Budget. Nature, 370(6486):181-182. https://doi.org/10.1038/370181a0
|
Kakizawa, M., Yamasaki, A., Yanagisawa, Y., 2001. A New CO2 Disposal Process Via Artificial Weathering of Calcium Silicate Accelerated by Acetic Acid. Energy, 26(4):341-354. https://doi.org/10.1016/s0360-5442(1)00005-6
|
Kasting, J., 1984. Comments on the BLAG Model; The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. American Journal of Science, 284(10):1175-1182. https://doi.org/10.2475/ajs.284.10.1175
|
Katsuyama, Y., Yamasaki, A., 2010. Development of a Process for Producing High-Purity Calcium Carbonate (CaCO3) from Waste Cement Using Pressurized CO2. Environmental Progress, 24(2):162-170. https://doi.org/10.1002/ep.10080
|
Kelemen, P. B., Matter, J., 2008. In Situ Carbonation of Peridotite for CO2 Storage. Proceedings of the National Academy of Sciences, 105(45):17295-17300. https://doi.org/10.1073/pnas.0805794105
|
King, H. E., Satoh, H., Tsukamoto, K., et al., 2014. Surface-Specific Measurements of Olivine Dissolution by Phase-Shift Interferometry. American Mineralogist, 99(2/3):377-386. https://doi.org/10.2138/am.2014.4606
|
Lackner, K. S., Butt, D. P., Wendt, C. H., 1997. Progress on Binding CO2 in Mineral Substrates. Energy Conversion and Management, 38:S259-S264. https://doi.org/10.1016/s0196-8904(96)00279-8
|
Lackner, K. S., Wendt, C. H., Butt, D. P., et al., 1995. Carbon Dioxide Disposal in Carbonate Minerals. Energy, 20(11):1153-1170. https://doi.org/10.1016/0360-5442(95)00071-n
|
Lekakh, S. N., Robertson, D. G. C., Rawlins, C. H., et al., 2008. Investigation of a Two-Stage Aqueous Reactor Design for Carbon Dioxide Sequestration Using Steelmaking Slag. Metallurgical and Materials Transactions B, 39(3):484-492. https://doi.org/10.1007/s11663-008-9155-5
|
Li, C. J., Wang, S. J., Bai, X. Y., et al., 2019. Estimation of Carbonate Rock Weathering-Related Carbon Sink in Global Major River Basins. Acta Geographica Sinica, 74(7):1319-1332 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201907005
|
Li, H. W., Wang, S. J., Bai, X. Y., et al., 2018. Spatiotemporal Distribution and National Measurement of the Global Carbonate Carbon Sink. Science of the Total Environment, 643:157-170. https://doi.org/10.1016/j.scitotenv.2018.06.196
|
Li, H. W., Wang, S. J., Bai, X. Y., et al., 2019. Spatiotemporal Evolution of Carbon Sequestration of Limestone Weathering in China. Science China Earth Sciences, 62(6):974-991. https://doi.org/10.1007/s11430-018-9324-2
|
Li, H. W., Wang, S. J., Bai, Y. X., et al., 2019. Effects of Climate Change and Ecological Restoration on Carbonate Rock Weathering Carbon Sequestration in the Karst Valley of Southwest China. Acta Ecologica Sinica, 39(16):6158-6172 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201916037
|
Li, Q., Cai, B. F., Chen, F., et al., 2019. Review of Environmental Risk Assessment Methods for Carbon Dioxide Geological Storage. Environmental Engineering, 37(2):16-24 (in Chinese with English abstract).
|
Li, W. Z., Li, W., Bai, Z. Q., et al., 2010. Sequestration of Carbon Dioxide with Olivine Promoted by an Electrochemical Method. Journal of China University of Mining & Technology, 39(2):265-269 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201002022
|
Li, W. Z., Li, W., Li, B. Q., et al., 2007. Using Electrolytic Method to Promote CO2 Sequestration in Serpentine by Mineral Carbonation. Journal of China University of Mining & Technology, 36(6):817-821 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200706020
|
Li, Y., Bai, X. Y., Wang, S. J., et al., 2017. Evaluating of the Spatial Heterogeneity of Soil Loss Tolerance and its Effects on Erosion Risk in the Carbonate Areas of Southern China. Solid Earth, 8(3):661-669. https://doi.org/10.5194/se-8-661-2017
|
Li, Z. B., Liu, L. W., Zhao, L., et al., 2011. Carbon Dioxide Sequestration by Ultramafic-Hosted Mine Tailings:Example from Jinchuan Copper-Nickel Mine Tailing. Quaternary Sciences, 31(3):70-78 (in Chinese with English abstract).
|
Liu, X. Y., Ding, C. X., Chu, P. K., 2004. Mechanism of Apatite Formation on Wollastonite Coatings in Simulated Body Fluids. Biomaterials, 25(10):1755-1761. https://doi.org/10.1016/j.biomaterials.2003.08.024
|
Liu, Z. H., 2012. New Progress and Prospects in the Study of Rock-Weathering-Related Carbon Sinks. Chinese Science Bulletin, 57(2), 95-102 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201202001
|
Liu, Z. H., Dreybrodt, W., Liu, H., 2011. Atmospheric CO2 Sink:Silicate Weathering or Carbonate Weathering?. Quaternary Sciences, 31(3):32-36 (in Chinese with English abstract).
|
Liu, Z. M., Wu, Y. H., 2015. Geological and Current Development Utilization of Serpentinite, China. Geology of Chemical Minerals, 37(3):171-179 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgkcdz201503011
|
Liu, Z. Q., Hao, Z. G., Liu, L., et al., 2016. Status of the Comprehensive Utilization of Tailings in China and Suggestions. Geological Review, 62(5):1277-1282 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201405005
|
Lizuka, A., Fujii, M., Yamasaki, A., et al., 2004. Development of a New CO2, Sequestration Process Utilizing the Carbonation of Waste cement. Industrial & Engineering Chemistry Research, 43(24):7880-7887. https://doi.org/10.1021/ie0496176
|
Lokhorst, A., Wildenborg, T., 2005. Introduction on CO2 Geological Storage-Classification of Storage Options. Oil & Gas Science and Technology, 60(3):513-515. https://doi.org/10.2516/ogst:2005033
|
Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., et al., 2009. Arc-Continent Collisions in the Tropics Set Earth's Climate State. Science, 364(6436):181-84. https://doi.org/10.1126/science.aav5300
|
Marchetti, C., 1977. On Geoengineering and the CO2 Problem. Climatic Change, 1(1):59-68. https://doi.org/10.1007/bf00162777
|
Maroto-Valer, M. M., Fauth, D. J., Kuchta, M. E., et al., 2005. Activation of Magnesium Rich Minerals as Carbonation Feedstock Materials for CO2 Sequestration. Fuel Processing Technology, 86(14/15):1627-1645. https://doi.org/10.1016/j.fuproc.2005.01.017
|
Mckelvy, M. J., Bearat, H., Chizmeshya, A. V. G., et al., 2003. Understanding Olivine CO2 Mineral Sequestration Mechanisms at the Atomic Level:Optimizing Reaction Process Design. Office of Scientific & Technical Information Technical Reports, 20(1-3):514-524. https://doi.org/10.2172/822896
|
Metz, B., Davidson, O., Connick, H. D., et al., 2005. Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge.
|
Meyer, N. A., Vögeli, J. U., Becker, M., et al., 2014. Mineral Carbonation of PGM Mine Tailings for CO2 Storage in South Africa:A Case Study. Minerals Engineering, 59:45-51. https://doi.org/10.1016/j.mineng.2013.10.014
|
Miilar, C. M., Aduomih, A. A. O., Still, B., et al., 2015. Estuarine Subaqueous Soil Organic Carbon Accounting:Sequestration and Storage. Soil Science Society of America Journal, 79 (2):389-397. https://doi.org/10.2136/sssaj2014.05.0204
|
Monger, H. C., Kraimer, R. A., Khresat, S., et al., 2015. Sequestration of Inorganic Carbon in Soil and Groundwater. Geology, 43(5):375-378. https://doi.org/10.1130/g36449.1
|
Montes-Hernandez, G., Pérez-López, R., Renard, F., et al., 2009. Mineral Sequestration of CO2 by Aqueous Carbonation of Coal Combustion Fly-Ash. Journal of Hazardous Materials, 161(2/3):1347-1354. https://doi.org/10.1016/j.jhazmat.2008.04.104
|
Neftel, A., Oeschger, H., Schwander, J., et al., 1982. Ice Core Sample Measurements Give Atmospheric CO2 Content during the Past 40 000 Yr. Nature, 295(5846):220-223. https://doi.org/10.1038/295220a0
|
O'Connor, W. K., Dahlin, D. C., Rush, G. E., et al., 2000. Carbon Dioxide Sequestration by Direct Mineral Carbonation:Process Mineralogy of Feed and Products. Mining, Metallurgy & Exploration, 19(2):95-101. https://doi.org/10.1007/bf03403262
|
O'Connor, W. K., Dahlin, D. C., Rush, G. E., et al., 2004. Energy and Economic Considerations for Ex-Situ and Aqueous Mineral Carbonation. Coal Technology Association Suffield Drive Gaithersburg Md, New York.
|
Olajire, A. A., 2013. A Review of Mineral Carbonation Technology in Sequestration of CO2. Journal of Petroleum Science and Engineering, 109:364-392. https://doi.org/10.1016/j.petrol.2013.03.013
|
Olsson, J., Bovet, N., Makovicky, E., et al., 2012. Olivine Reactivity with CO2 and H2O on a Microscale:Implications for Carbon Sequestration. Geochimica et Cosmochimica Acta, 77:86-97. https://doi.org/10.1016/j.gca.2011.11.001
|
Paktunc, A. D., Davé, N. K., 2002. Formation of Secondary Pyrite and Carbonate Minerals in the Lower Williams Lake Tailings Basin, Elliot Lake, Ontario, Canada. American Mineralogist, 87(5/6):593-602. https://doi.org/10.2138/am-2002-5-601
|
Pan, X., 2007. Experimental and Carbonation Mechanism Study on Silicate for CO2 Sequestration(Dissertation). Huazhong University of Science & Technology, Wuhan, 32 (in Chinese with English abstract).
|
Petit, J. R., Jouzel, J., Raynaud, D., et al., 1999. Climate and Atmospheric History of the Past 420, 000 Years from the Vostok Ice Core, Antarctica. Nature, 399(6735):429-436. https://doi.org/10.1038/20859
|
Peuble, S., Andreani, M., Godard, M., et al., 2015. Carbonate Mineralization in Percolated Olivine Aggregates:Linking Effects of Crystallographic Orientation and Fluid Flow. American Mineralogist, 100(2/3):474-482. https://doi.org/10.2138/am-2015-4913
|
Rendek, E., Ducom, G., Germain, P., 2006. Carbon Dioxide Sequestration in Municipal Solid Waste Incinerator (MSWI) Bottom Ash. Journal of Hazardous Materials, 128(1):73-79. https://doi.org/10.1016/j.jhazmat.2005.07.033
|
Rollo, H. A., Jamieson, H. E., 2006. Interaction of Diamond Mine Waste and Surface Water in the Canadian Arctic. Applied Geochemistry, 21(9):1522-1538. https://doi.org/10.1016/j.apgeochem.2006.05.008
|
Romanov, V., Soong, Y., Carney, C., et al., 2015. Mineralization of Carbon Dioxide:A Literature Review. Chem. Bio. Eng. Reviews, 2(4):231-256. https://doi.org/10.1002/cben.201500002
|
Sanna, A., Uibu, M., Caramanna, G., et al., 2014. A Review of Mineral Carbonation Technologies to Sequester CO2. Chem. Soc. Rev., 43(23):8049-8080. https://doi.org/10.1039/c4cs00035h
|
Schaef, H. T., Windisch, C. F. Jr, McGrail, B. P., et al., 2011. Brucite[Mg(OH)2] Carbonation in Wet Supercritical CO2:An in Situ High Pressure X-Ray Diffraction Study. Geochimica et Cosmochimica Acta, 75(23):7458-7471. https://doi.org/10.1016/j.gca.2011.09.029
|
Schuiling, R. D., Krijgsman, P., 2006. Enhanced Weathering:An Effective and Cheap Tool to Sequester CO2. Climatic Change, 74(1/2/3):349-354. https://doi.org/10.1007/s10584-005-3485-y
|
Schwartzman, D. W., Volk, T., 1989. Biotic Enhancement of Weathering and the Habitability of Earth. Nature, 340(6233):457-460. https://doi.org/10.1038/340457a0
|
Seifritz, W., 1990. CO2 Disposal by Means of Silicates. Nature, 345(6275):486-486. https://doi.org/10.1038/345486b0
|
Sheng, X. F., Ji, J. F., Chen, J., 2011. Assessment of Carbon Dioxide Sequestration Potential of Ultramafic Rocks in China. Quaternary Sciences, 31(3):447-454 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201103007
|
Smith, R. W., Bianchi, T. S., Allison, M., et al., 2015. High Rates of Organic Carbon Burial in Fjord Sediments Globally. Nature Geoscience, 8(6):450-453. https://doi.org/10.1038/ngeo2421
|
Steel, K. M., Alizadehhesari, K., Balucan, R. D., et al., 2013. Conversion of CO2 into Mineral Carbonates Using a Regenerable Buffer to Control Solution pH. Fuel, 111:40-47. https://doi.org/10.1016/j.fuel.2013.04.033
|
Stolaroff, J. K., Lowry, G. V., Keith, D. W., 2005. Using CaO- And MgO-Rich Industrial Waste Streams for Carbon Sequestration. Energy Conversion and Management, 46(5):687-699. https://doi.org/10.1016/j.enconman.2004.05.009
|
Suarez, C. A., Edmonds, M., Jones, A. P., 2019. Earth Catastrophes and their Impact on the Carbon Cycle. Elements, 15(5):301-306. https://doi.org/10.2138/gselements.15.5.301
|
Tanaka, K., Okawa, H., Hashimoto, K., et al., 2016. Effect of NO2 in Exhaust Gas from an Oxyfuel Combustion System on the Cap Rock of a Proposed CO2 Injection Site. Applied Geochemistry, 70:17-26. https://doi.org/10.1016/j.apgeochem.2016.04.007
|
Tang, H. Y., Meng, W. J., Sun, S. H., et al., 2014. Leaching and Carbonation of Steelmaking Slag. Journal of University of Science and Technology Beijing, 8(S1):27-31 (in Chinese with English abstract).
|
Tang, L., 2017. Natural CO2 Mineralization with V-Ti-Fe Ore Tailings in Panxi Region(Dissertation). Sichuan University, Chengdu, 23 (in Chinese with English abstract).
|
Teir, S., Eloneva, S., Fogelholm, C. J., et al., 2007. Dissolution of Steelmaking Slags in Acetic Acid for Precipitated Calcium Carbonate Production. Energy, 32(4):528-539. https://doi.org/10.1016/j.energy.2006.06.023
|
Uibu, M., Uus, M., Kuusik, R., 2009. CO2 Mineral Sequestration in Oil-Shale Wastes from Estonian Power Production. Journal of Environmental Management, 90(2):1253-1260. https://doi.org/10.1016/j.jenvman.2008.07.012
|
Vogeli, J., Reid, D. L., Becker, M., et al., 2011. Investigation of the Potential for Mineral Carbonation of PGM Tailings in South Africa. Minerals Engineering, 24(12):1348-1356. https://doi.org/10.1016/j.mineng.2011.07.005
|
Wang, S. J., Liu, Z. H., Ni, J., et al., 2017. A Review of Research Progress and Future Prospective of Carbon Cycle in Karst Area of South China. Earth and Environment, 45(1):2-9 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx201701002
|
Wang, X. L., Maroto-Valer, M. M., 2013. Optimization of Carbon Dioxide Capture and Storage with Mineralisation Using Recyclable Ammonium Salts. Energy, 51:431-438. https://doi.org/10.1016/j.energy.2013.01.021
|
Wang, Y. F., 2015. An Exploratory Study on CO2 Mineralization and Utilization(Dissertation). Sichuan University, Chengdu, 14 (in Chinese with English abstract).
|
Wang, Z. H., Zhang, J. Y., Xu, J., et al., 2008. A Theoretical Study on Mineral Carbonation for CO2 Sequestration. Journal of Engineering Thermophysics, 29(6):1063-1068 (in Chinese with English abstract).
|
Wendt, C. H., Butt, D. P., Lackner, K. S., et al., 1999. Thermodynamic Considerations of Using Chlorides to Accelerate the Carbonate Formation from Magnesium Silicates. Los Alamos Nation Laboratory, Los Alamos, 349-354.
|
Weng, J. T., 1995. The Effect of Carbonate Rocks on Global Carbon Cycle. Advance in Earth Sciences, 10(2):154-158 (in Chinese with English abstract).
|
Wilson, S. A., 2006. Verifying and Quantifying Carbon Fixation in Minerals from Serpentine-Rich Mine Tailings Using the Rietveld Method with X-Ray Powder Diffraction Data. American Mineralogist, 91(8/9):1331-1341. https://doi.org/10.2138/am.2006.2058
|
Wilson, S. A., Dipple, G. M., 2009. Quantifying Carbon Fixation in Trace Minerals from Processed Kimberlite:A Comparative Study of Quantitative Methods Using X-Ray Powder Diffraction Data with Applications to the Diavik Diamond Mine, Northwest Territories, Canada. Applied Geochemistry, 24(12):2312-2331. https://doi.org/10.1016/j.apgeochem.2009.09.018
|
Wilson, S. A., Dipple, G. M., Power, I. M., et al., 2009. Carbon Dioxide Fixation within Mine Wastes of Ultramafic-Hosted Ore Deposits:Examples from the Clinton Creek and Cassiar Chrysotile Deposits, Canada. Economic Geology, 104(1):95-112. https://doi.org/10.2113/gsecongeo.104.1.95
|
Wu, H. Z., 2011. Summary of Study of Solid Waste Carbonation. Coal Ash China, 23(1):33-35 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fmh201101010
|
Xie, H. P., 2010. Developing Low-Carbon Technology and Promoting Green Economy. Energy of China, 32(9):5-10 (in Chinese with English abstract).
|
Xie, H. P., Wang, Y. F., Chu, W., et al., 2014. Mineralization of Flue Gas CO2 with Coproduction of Valuable Magnesium Carbonate by Means of Magnesium Chloride. Chinese Science Bulletin, 59(23):2882-2889. https://doi.org/10.1007/s11434-014-0388-1
|
Xie, H. P., Xie, L. Z., Wang, Y. F., et al., 2012. CCU:A More Feasible and Economic Strategy than CCS for Reducing CO2 Emissions. Journal of Sichuan University (Engineering Science Edition), 44(4):1-5 (in Chinese with English abstract).
|
Xu, J., 2006. Experimental Study on the Reaction Mechanism of Carbon dioxide Mineral Carbonation. Huazhong University of Science and Technology, 19 (in Chinese with English abstract).
|
Yadav, V. S., Prasad, M., Khan, J., et al., 2010. Sequestration of Carbon Dioxide (CO2) Using Red Mud. Journal of Hazardous Materials, 176(1/2/3):1044-1050. https://doi.org/10.1016/j.jhazmat.2009.11.146
|
Yan, H., Zhang, J. Y., Wang, Z. L., et al., 2013. CO2 Sequestration by Direct Mineral Carbonation of Serpentine under Medium and Low Pressure. Journal of Fuel Chemistry and Technology, 41(6):748-753 (in Chinese with English abstract).
|
Yao, R., 2003. Research of Carbon Sink Capacity Caused by Rock Weathering Process in China. Central South University, Changsha, 7 (in Chinese with English abstract).
|
Yu, G., Song, C., Pan, Y., et al., 2014. Review of New Progress in Tailing Dam Safety in Foreign Research and Current State with Development Trent in China (in Chinese). Chinese Journal of Rock Mechanics and Engineering, 33(2014):3238-3248.
|
Yuan, D. X., 2001. Carbon Cycle in Earth System and Its Effects on Environment and Resources. Quaternary Sciences, 21(3):223-232 (in Chinese with English abstract).
|
Zeng, Q. R., Liu, Z. H., 2017. Is Basalt Weathering a Major Mechanism for Atmospheric CO2 Consumption? Chinese Science Bulletin, 62(10):1041-1049(in Chinese with English abstract).
|
Zhang, B. B., Wang, H. M., Zeng, S. H., et al., 2012. Current Status and Outlook of Carbon Dioxide Mineral Carbonation Technologies. Chemical Industry and Engineering Progress, 31(9):2075-2083 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201209044
|
Zhang, J. S., Zhang, R., Bi, J. C., 2011. Fundamental Research on CO2 Mineralization:I.Leaching Kinetics of Forsterite and Serpentine with Hydrochloric Acid. Journal of Fuel Chemistry and Technology, 39(9):706-711 (in Chinese with English abstract).
|
Zhang, J., Zhang, R., Geerlings, H., et al., 2012. Mg-Silicate Carbonation Based on an HCl- and NH3- Recyclable Process:Effect of Carbonation Temperature. Chemical Engineering & Technology, 35(3):525-531. https://doi.org/10.1002/ceat.201100425
|
Zhao, L., Sang, L. Q., Chen, J., et al., 2010. Aqueous Carbonation of Natural Brucite:Relevance to CO2 Sequestration. Environmental Science & Technology, 44(1):406-411. https://doi.org/10.1021/es9017656
|
Zhao, Y. M., Feng, C. Y., Li, D. X., 2017. New Progress in Prospecting for Skarn Deposits and Spatial-Teporal Distribution of Skarn Deposits in China. Mineral Deposits, 36(3):519-543 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201703001
|
Zhou, J. P., Xian, X. F., Jiang, Y. D., et al., 2010. A Permeability Model Including Effective Stress and Coal Matrix Shrinking Effect. Rock and Soil Mechanics, 31(7):2317-2323 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201007049
|
Zhu, C., Zhao, L., Gao, X., et al., 2011. CO2 Sequestration Based Study of Reaction Kinetics of Brucite. Quaternary Sciences, 31(3):438-446 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201103006
|
Zimmerman, A. R., Cornelissen, G., 2018. Consider Fjord-Assisted Carbon Storage. Environmental Science & Technology, 52(19):10911-10913. https://doi.org/10.1021/acs.est.8b04854
|
Zoback, M. D., Gorelick, S. M., 2012. Earthquake Triggering and Large-Scale Geologic Storage of Carbon Dioxide. Proceedings of the National Academy of Sciences, 109(26):10164-10168. https://doi.org/10.1073/pnas.1202473109
|
曾庆睿, 刘再华, 2017.玄武岩风化是重要的碳汇机制吗?.科学通报, 62(10):1041-1049.
|
崔振东, 刘大安, 曾荣树, 等, 2010.中国CO2地质封存与可持续发展.中国人口·资源与环境, 20(3):9-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201003002
|
杜玉昆, 庞飞, 陈科, 等, 2019.超临界二氧化碳喷射破碎页岩试验.地球科学, 44(11):3749-3756. doi: 10.3799/dqkx.2019.221
|
方谦, 洪汉烈, 赵璐璐, 等, 2018.风化成土过程中自生矿物的气候指示意义.地球科学, 43(3):753-769. doi: 10.3799/dqkx.2018.905
|
高雄, 孟烨, 朱辰, 等, 2011.氯化铵浸取纤蛇纹石动力学研究.中国岩溶, 30(4):472-478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr201104020
|
高雄, 朱辰, 赵良, 2012.灼烧处理对纤蛇纹石反应活性的影响.高校地质学报, 18(2):83-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201202009
|
李朝君, 王世杰, 白晓永, 等, 2019.全球主要河流流域碳酸盐岩风化碳汇评估.地理学报, 74(7):1319-1332. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201907005
|
李汇文, 王世杰, 白晓永, 等, 2019.气候变化及生态恢复对喀斯特槽谷碳酸盐岩风化碳汇的影响评估.生态学报, 39(16):6158-6172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201916037
|
李琦, 蔡博峰, 陈帆, 等, 2019.二氧化碳地质封存的环境风险评价方法研究综述.环境工程, 37(2):16-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgc201902003
|
李文志, 李文, 白宗庆, 等, 2010.电解法促进橄榄石固定CO2的研究.中国矿业大学学报, 39(2):265-269.
|
李文志, 李文, 李保庆, 等, 2007.电解法用于促进蛇纹石矿物固定CO2的研究.中国矿业大学学报, 36(6):817-821. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200706020
|
李子波, 刘连文, 赵良, 等, 2011.应用超基性岩尾矿封存CO2——以金川铜镍矿尾矿为例.第四纪研究, 31(3), 70-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201103009
|
刘再华, 2012.岩石风化碳汇研究的最新进展和展望.科学通报, 57(2):95-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201202001
|
刘再华, Dreybrodt, W., 刘洹. 2011.大气CO2汇:硅酸盐风化还是碳酸盐风化的贡献?.第四纪研究, 31(3):32-36.
|
刘振敏, 吴颖慧, 2015.中国蛇纹岩矿地质特征及开发利用现状.化工矿产地质, 37(3): 171-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgkcdz201503011
|
刘志强, 郝梓国, 刘恋, 等, 2016.我国尾矿综合利用研究现状及建议.地质论评, 62(5):1277-1282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsy201725171
|
倪健, 王世杰, 刘再华, 等, 2017.中国喀斯特碳循环.地球与环境, 45(1):1. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx201701001
|
潘霞, 2007.硅酸盐碳酸化隔离CO2的实验和理论研究(博士学位论文).武汉: 华中科技大学, 32.
|
盛雪芬, 季峻峰, 陈骏, 2011.中国超基性岩封存CO2的潜力研究.第四纪研究, 31(3):447-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201103007
|
唐海燕, 孟文佳, 孙绍恒, 等, 2014.炼钢炉渣的浸出和碳酸化.北京科技大学学报, 8(S1):27-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKV20142015100800404482
|
唐亮, 2017.攀西地区尾矿自矿化利用CO2研究(硕士学位论文).成都: 四川大学, 23.
|
王世杰, 刘再华, 倪健, 等, 2017.中国南方喀斯特地区碳循环研究进展.地球与环境, 45(1):2-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx201701002
|
王昱飞, 2015. CO2矿化利用探索研究(博士学位论文).成都: 四川大学, 15.
|
王宗华, 张军营, 徐俊, 等, 2008. CO2矿物碳酸化隔离的理论研究.工程热物理学报, 29(6):1063-1068. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb200806043
|
翁金桃, 1995.碳酸盐岩在全球碳循环过程中的作用.地球科学进展, 10(2):154-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500054144
|
吴昊泽, 2011.固体废弃物碳酸化研究综述.粉煤灰, 23(1):33-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fmh201101010
|
谢和平, 2010.发展低碳技术推进绿色经济.中国能源, 32(9):5-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgny201009002
|
谢和平, 王昱飞, 储伟, 等, 2014.氯化镁矿化利用低浓度烟气CO2联产碳酸镁.科学通报, 59(19):1797-1803. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201419001
|
谢和平, 谢凌志, 王昱飞, 等, 2012.全球CO2减排不应是CCS, 应是CCU.四川大学学报(工程科学版), 44(4):1-5.
|
徐俊, 2006. CO2矿化机制的实验研究.华中科技大学, 19.
|
晏恒, 张军营, 王志亮, 等, 2013.中低压条件下蛇纹石直接矿物碳酸化隔离CO2的实验研究.燃料化学学报, 41(6):748-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201306017
|
姚锐, 2003.中国岩石风化对大气CO2的汇效应研究(硕士学位论文).长沙: 中南大学, 7.
|
袁道先, 2001.地球系统的碳循环和资源环境效应.第四纪研究, 21(3):223-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200103004
|
张兵兵, 王慧敏, 曾尚红, 等, 2012. CO2矿物封存技术现状及展望.化工进展, 31(9):2075-2083.
|
张建树, 张荣, 毕继诚, 2011. CO2矿化反应基础研究Ⅰ:镁橄榄石和蛇纹石盐酸浸出动力学研究.燃料化学学报, 39(9):706-711.
|
张军营, 赵永椿, 潘霞, 等, 2008.硅灰石碳酸化隔离CO2的实验研究.自然科学进展, 18(7):836-840.
|
赵一鸣, 丰成友, 李大新, 2017.中国矽卡岩矿床找矿新进展和时空分布规律.矿床地质, 36(3):519-543. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201703001
|
周军平, 鲜学福, 姜永东, 等, 2010.考虑基质收缩效应的煤层气应力场-渗流场耦合作用分析.岩土力学, 31(7):2317-2323. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201007049
|
朱辰, 赵良, 高雄, 等, 2011.基于CO2封存的水镁石反应动力学研究.第四纪研究, 31(3):438-446.
|