• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 2
    Feb.  2021
    Turn off MathJax
    Article Contents
    Qu Jingyi, Tong Man, Yuan Songhu, 2021. Effect and Mechanism of Fe(II) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes. Earth Science, 46(2): 632-641. doi: 10.3799/dqkx.2020.029
    Citation: Qu Jingyi, Tong Man, Yuan Songhu, 2021. Effect and Mechanism of Fe(II) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes. Earth Science, 46(2): 632-641. doi: 10.3799/dqkx.2020.029

    Effect and Mechanism of Fe(II) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes

    doi: 10.3799/dqkx.2020.029
    • Received Date: 2019-11-14
    • Publish Date: 2021-02-15
    • Geologic microorganisms are the main factors driving the redox cycling of iron and manganese in sedimentary environment. The effect and mechanism of Fe(II) oxygenation on the activities of different iron and manganese cycling functional microbes remain unexplored. In this study,it used Shewanella oneidensis MR-1,Pseudogulbenkiania sp. strain 2002,Pseudomonas putida MnB1,Leptothrix discophora SS-1 as the representative iron and manganese cycling functional microbes,it investigated the difference in effect and mechanisms of Fe(II) oxygenation on the activities of these four bacteria. Results show that the living cell counts of MR-1 and MnB1 decreased by 4-5 lg upon 60 min oxygenation of 0.05 mM Fe(II),but no significant inactivation of SS-1 and S.2002 was observed. The surface absorbed •OH and intracellular •OH produced from Fe(II) oxygenation were the dominant reasons for bacteria inactivation,the extracellular H2O2,extracellular dissolved •OH and Fe(III) oxides are minor causes for bacteria inactivation. SS-1 and S.2002 show oxidative stress responses during Fe2+ oxygenation,which helped to resist the damage of reactive oxygen species.

       

    • loading
    • Amonette, J. E. , Templeton, J. C. , 1998. Improvements to the Quantitative Assay of Nonrefractory Minerals for Fe(II) and Total Fe Using 1, 10-Phenanthroline. Clays and Clay Minerals, 46(1): 51-62. https://doi.org/10.1346/ccmn.1998.0460106
      Butterfield, C. N. , Soldatova, A. V. , Lee, S. W. , et al. , 2013. Mn(II, III) Oxidation and MnO2 Mineralization by an Expressed Bacterial Multicopper Oxidase. PNAS, 110(29): 11731-11735. https://doi.org/10.1073/pnas.1303677110
      Chen, R. , Liu, H. , Tong, M. , et al. , 2018. Impact of Fe(II) Oxidation in the Presence of Iron-Reducing Bacteria on Subsequent Fe(III) Bio-Reduction. The Science of the Total Environment, 639: 1007-1014. https://doi.org/10.1016/j.scitotenv.2018.05.241
      Crump, B. C. , Kling, G. W. , Bahr, M. , et al. , 2003. Bacterioplankton Community Shifts in an Arctic Lake Correlate with Seasonal Changes in Organic Matter Source. Applied and Environmental Microbiology, 69(4): 2253-2268. https://doi.org/10.1128/aem.69.4.2253-2268.2003
      Deng, Y. M. , Wang, Y. X. , Li, H. J. , et al. , 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886 (in Chinese with English abstract). http://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain
      Duan, Y. H. , Gan, Y. Q. , Guo, X. X. , et al. , 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Monitoring Field, Jianghan Plain. Geological Science and Technology Information, 33(2): 140-147 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201402024.htm
      Leach, R.M., Harris, E.D., 1997. Manganese: Handbook of Nutritionally Essential Minerals. Marcel Dekker, New York.
      Li, D. , Zeng, H. P. , 2014. Biological Purification Technology of High Iron and Manganese Groundwater. China Architecture & Building Press, Beijing (in Chinese).
      Li, G. B. , Liu, C. , 1989. Eliminating Iron and Manganese from Groundwater (2nd Edition). China Architecture & Building Press, Beijing (in Chinese).
      Liu, G. F. , Zhu, J. Q. , Yu, H. L. , et al. , 2018. Review on Electron-Shuttle-Mediated Microbial Reduction of Iron Oxides Minerals. Earth Science, 43(Suppl. 1): 157-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1016.htm
      Londono, S. C. , Hartnett, H. E. , Williams, L. B. , 2017. Antibacterial Activity of Aluminum in Clay from the Colombian Amazon. Environmental Science & Technology, 51(4): 2401-2408. https://doi.org/10.1021/acs.est.6b04670
      Ma, S. C. , Tong, M. , Yuan, S. H. , et al. , 2019. Responses of the Microbial Community Structure in Fe(II)-Bearing Sediments to Oxygenation: The Role of Reactive Oxygen Species. ACS Earth and Space Chemistry, 3(5): 738-747. https://doi.org/10.1021/acsearthspacechem.8b00189
      Meyerhof, M. S. , Wilson, J. M. , Dawson, M. N. , et al. , 2016. Microbial Community Diversity, Structure and Assembly across Oxygen Gradients in Meromictic Marine Lakes, Palau. Environmental Microbiology, 18(12): 4907-4919. https://doi.org/10.1111/1462-2920.13416
      Nevin, K. P. , Lovley, D. R. , 2002. Mechanisms for Fe(III) Oxide Reduction in Sedimentary Environments. Geomicrobiology Journal, 19(2): 141-159. https://doi.org/10.1080/01490450252864253
      Nguyen, T. T. M. , Park, H. J. , Kim, J. Y. , et al. , 2013. Microbial Inactivation by Cupric Ion in Combination with H2O2: Role of Reactive Oxidants. Environmental Science & Technology, 47(23): 13661-13667. https://doi.org/10.1021/es403155a
      Nivière, V. , Fontecave, M. , 2004. Discovery of Superoxide Reductase: An Historical Perspective. JBIC Journal of Biological Inorganic Chemistry, 9(2): 119-123. https://doi.org/10.1007/s00775-003-0519-7
      Page, S. E. , Kling, G. W. , Sander, M. , et al. , 2013. Dark Formation of Hydroxyl Radical in Arctic Soil and Surface Waters. Environmental Science & Technology, 47(22): 12860-12867. https://doi.org/10.1021/es4033265
      Shcolnick, S. , Summerfield, T. C. , Reytman, L. , et al. , 2009. The Mechanism of Iron Homeostasis in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803 and Its Relationship to Oxidative Stress. Plant Physiology, 150(4): 2045-2056. https://doi.org/10.1104/pp.109.141853
      Sun, B. , Guan, X. H. , Fang, J. Y. , et al. , 2015. Activation of Manganese Oxidants with Bisulfite for Enhanced Oxidation of Organic Contaminants: The Involvement of Mn(III). Environmental Science & Technology, 49(20): 12414-12421. https://doi.org/10.1021/acs.est.5b03111
      Sunda, W. G. , Kieber, D. J. , 1994. Oxidation of Humic Substances by Manganese Oxides Yields Low-Molecular-Weight Organic Substrates. Nature, 367(6458): 62-64. doi: 10.1038/367062a0
      Tong, M. , Yuan, S. H. , Ma, S. C. , et al. , 2016. Production of Abundant Hydroxyl Radicals from Oxygenation of Subsurface Sediments. Environmental Science & Technology, 50(1): 214-221. https://doi.org/10.1021/acs.est.5b04323
      Wang, X. , Dong, H. L. , Zeng, Q. , et al. , 2017. Reduced Iron-Containing Clay Minerals as Antibacterial Agents. Environmental Science & Technology, 51(13): 7639-7647. https://doi.org/10.1021/acs.est.7b00726
      Weber, K. A. , Achenbach, L. A. , Coates, J. D. , 2006. Microorganisms Pumping Iron: Anaerobic Microbial Iron Oxidation and Reduction. Nature Reviews Microbiology, 4(10): 752-764. https://doi.org/10.1038/nrmicro1490
      Williams, L. B. , Metge, D. W. , Eberl, D. D. , et al. , 2011. What Makes a Natural Clay Antibacterial? Environmental Science & Technology, 45(8): 3768-3773. https://doi.org/10.1021/es1040688
      Swanner, E. D. , Mloszewska, A. M. , Cirpka, O. A. , et al. , 2015. Modulation of Oxygen Production in Archaean Oceans by Episodes of Fe(II) Toxicity. Nature Geoscience, 8(2): 126-130. https://doi.org/10.1038/ngeo2327
      Tolar, B. B. , Powers, L. C. , Miller, W. L. , et al. , 2016. Ammonia Oxidation in the Ocean can be Inhibited by Nanomolar Concentrations of Hydrogen Peroxide. Frontiers in Marine Science, 3: 237. https://doi.org/10.3389/fmars.2016.00237
      Zhang, X. , Chen, T. H. , Wang, J. , et al. , 2018. Influence of Iron Oxides on Methanogenic Process of Organic Matter and Related Mechanism. Earth Science, 43(Suppl. 1): 136-144 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_earth-science_thesis/0201272213930.html
      Zhou, F. , Zhu, J. , Zhang, P. , et al. , 2017. Effect of Groundwater Components on Hydroxyl Radical Production by Fe(Ⅱ) Oxygenation. Earth Science, 42(6): 1039-1044 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201706013.htm
      邓娅敏, 王焰新, 李慧娟, 等, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
      段艳华, 甘义群, 郭欣欣, 等, 2014. 江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析. 地质科技情报, 33(2): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402024.htm
      李冬, 曾辉平, 2014. 高铁锰地下水生物净化技术. 北京: 中国建筑工业出版社.
      李圭白, 刘超, 1989. 地下水除铁除锰(第2版). 北京: 中国建筑工业出版社.
      柳广飞, 朱佳琪, 于华莉, 等, 2018. 电子穿梭体介导微生物还原铁氧化物的研究进展. 地球科学, 43(增刊1): 157-170. doi: 10.3799/dqkx.2018.590
      张勋, 陈天虎, 王进, 等, 2018. 铁氧化物对有机质厌氧产甲烷过程的影响及其机制. 地球科学, 43(增刊1): 136-144. doi: 10.3799/dqkx.2018.545
      周帆, 朱健, 张鹏, 等, 2017. 地下水化学组成对Fe2+氧化产生羟自由基的影响. 地球科学, 42(6): 1039-1044. doi: 10.3799/dqkx.2017.082
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (1423) PDF downloads(76) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return