• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 7
    Jul.  2020
    Turn off MathJax
    Article Contents
    Zhang Jibiao, Ding Xiaozhong, Liu Yanxue, Zhang Heng, 2020. Geochronology and Geological Implication in Two Episodes of Meso-Neoproterozoic Magmatism in the Southwestern Yangtze Block. Earth Science, 45(7): 2452-2468. doi: 10.3799/dqkx.2020.034
    Citation: Zhang Jibiao, Ding Xiaozhong, Liu Yanxue, Zhang Heng, 2020. Geochronology and Geological Implication in Two Episodes of Meso-Neoproterozoic Magmatism in the Southwestern Yangtze Block. Earth Science, 45(7): 2452-2468. doi: 10.3799/dqkx.2020.034

    Geochronology and Geological Implication in Two Episodes of Meso-Neoproterozoic Magmatism in the Southwestern Yangtze Block

    doi: 10.3799/dqkx.2020.034
    • Received Date: 2020-02-25
    • Publish Date: 2020-07-15
    • Late Mesoproterozoic to Early Neoproterozoic igneous rocks occur in the southwestern Yangtze block, which had a great bearing on the evolution history of the Yangtze block during the late Mesoproterozoic to early Neoproterozoic. This study reports SHRIMP zircon U-Pb ages and geochemistry data for gabbros that intruded in the Yanbian Group, and that of rhyolites from the upper Tianbaoshan Formation of the Huili Group in the southwestern Yangtze block.The rhyolites were dated at 1 011.9±8.9 Ma and the gabbros were formed at 910.6±4.7 Ma. The rhyolites in the Tianbaoshan Formation were characterized by high SiO2 and K2O contents and high FeOt/MgO ratio. The contents of rare earth elements of rhyolites are high(∑REE=292×10-6-401×10-6), and characterized by LREE-enriched and HREE-depleted patterns[(La/Yb)N=1.77-6.74] with typical depletion of Eu(δEu=0.43-0.56), consistent with the geochemical characteristics of A-type granites. The geochemistry indicates that the rhyolites were derived from the partial melting of previous crust and formed in a continental rift setting. The gabbro shave low rare earth elements(∑REE=54×10-6-98×10-6) and characterized by slightly LREE-enriched and HREE-depleted patterns with unconspicuous Eu anomaly[(La/Yb)N=1.46-4.72, δEu=0.81-1.31] and the trace element patterns with typical depletion of Nb-Ta and Ti but no enrichment of Zr-Hf. The gabbros were derived from the subduction-modified lithospheric mantle wedge and formed in an arc setting. In view of the two episodes of magmatism in the study region, we propose that the tectonic properties changed from a continental rift setting to a compression setting in the southwestern Yangtze Block at 1 000-910 Ma.

       

    • loading
    • Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186:173-194. https://doi.org/10.1016/j.earscirev.2017.06.001
      Chen, W. T., Zhou, M. F., Zhao, X. F., 2013. Late Paleoproterozoic Sedimentary and Mafic Rocks in the Hekou Area, SW China:Implication for the Reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231:61-77. https://doi.org/10.1016/j.precamres.2013.03.011
      Chen, W. T., Sun, W. H., Zhou, M. F., et al., 2018. Ca. 1 050 Ma Intra-Continental Rift-Related A-Type Felsic Rocks in the Southwestern Yangtze Block, South China. Precambrian Research, 309:22-44. https://doi.org/10.1016/j.precamres.2017.02.011
      Chen, W. T., Sun, W. H., Wang, W., et al., 2014. "Grenvillian" Intra-Plate Mafic Magmatism in the Southwestern Yangtze Block, SW China. Precambrian Research, 242:138-153. https://doi.org/10.1016/j.precamres.2013.12.019
      Crawford, A. J., Beccaluva, L., Serri, G., 1981. Tectono-Magmatic Evolution of the West Philippine-Mariana Region and the Origin of Boninites. Earth and Planetary Science Letters, 54(2):346-356. https://doi.org/10.1016/0012-821x(81)90016-9
      Du, L. L., Guo, J. H., Nutman, A. P., et al., 2014. Implications for Rodinia Reconstructions for the Initiation of Neoproterozoic Subduction at~860 Ma on the Western Margin of the Yangtze Block:Evidence from the Guandaoshan Pluton. Lithos, 196-197:67-82. https://doi.org/10.1016/j.lithos.2014.03.002
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7):641. https://doi.org/10.1130/0091-7613(1992)020 < 0641:csotat > 2.3.co; 2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
      Geng, Y.S., Yang, C.H., Wang, X.S., et al., 2008. Evolution of Metamorphic Basement in Western Margin of Yangtze Craton. China University of Geosciences Press, Beijing(in Chinese).
      Geng, Y.S., Kuang, H.W., Liu, Y.Q., et al., 2017. Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Yangtze Block. Acta Geologica Sinica., 91(10):2151-2174(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201710001
      Guan, J.L., Zheng, L.L., Liu, J.H., et al., 2011. Zircons SHRlMP U-Pb Dating of Diabase from Hekou, Sichuan Province, China, and Its Geological Significance. Acta Geologica Sinica, 85(4):482-490(in Chinese with English abstract).
      Greentree, M. R., Li, Z. X., Li, X. H., et al., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Research, 151(1/2):79-100. https://doi.org/10.1016/j.precamres.2006.08.002
      Guo, J. L., Gao, S., Wu, Y. B., et al., 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China:Implications for Early Archean Crustal Growth. Precambrian Research, 242:82-95. https://doi.org/10.1016/j.precamres.2013.12.018
      Han, Q. S., Peng, S. B., Kusky, T., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004
      Han, Q. S., Peng, S. B., Polat, A., et al., 2019. Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex:Evidence for a Collisional Orogenic Event in the Yangtze Craton. Lithos, 342-343:513-529. https://doi.org/10.1016/j.lithos.2019.05.015
      Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2017. The Shimian Ophiolite in the Western Yangtze Block, SW China:Zircon SHRIMP U-Pb Ages, Geochemical and Hf-O Isotopic Characteristics, and Tectonic Implications. Precambrian Research, 298:107-122. https://doi.org/10.1016/j.precamres.2017.06.005
      Hui, B., Dong, Y. P., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-Rock Geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301:65-85. https://doi.org/10.1016/j.precamres.2017.09.003
      Jiang, G. Q., Sohl, L. E., Christie-Blick, N., 2014. Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (south China):Paleogeographic Implications. Geology, 31(10):917. https://doi.org/10.1130/g19790.1
      Landenberger, B., Collins, W. J., 1996. Derivation of A-Type Granites from a Dehydrated Charnockitic Lower Crust:Evidence from the Chaelundi Complex, Eastern Australia. Journal of Petrology, 37(1):145-170. https://doi.org/10.1093/petrology/37.1.145
      Li, X.H., Wang, X.C., Li, W.X., et al., 2008. Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China:from Orogenesis to Intracontinental Rifting. Geochimica, 37(4):382-398(in Chinese with English abstract).
      Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2):117-128. https://doi.org/10.1016/j.precamres. 2009.07.004 doi: 10.1016/j.precamres.2009.07.004
      Li, X. H., Li, Z. X., Sinclair, J. A., et al., 2006. Revisiting the "Yanbian Terrane":Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China. Precambrian Research, 151(1/2):14-30. https://doi.org/10.1016/j.precamres.2006.07.009
      Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia:A Synthesis. Precambrian Research, 160(1/2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      Li, Q. W., Zhao, J. H., 2018. The Neoproterozoic High-Mg Dioritic Dikes in South China Formed by High Pressures Fractional Crystallization of Hydrous Basaltic Melts. Precambrian Research, 309:198-211. https://doi.org/10.1016/j.precamres.2017.04.009
      Lu, G. M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo-Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China:Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322:66-84. https://doi.org/10.1016/j.precamres.2018.12.019
      Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3/4):207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4):120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 54(6):1098-1104. https://doi.org/10.1007/s11434-008-0558-0
      Ren, G.M., Pang, W.H., Pan, G.T., et al., 2017. Ascertainment of the Mesoproterozoic Caiziyuan Ophiolitic Mélange on the Western Margin of the Yangtze Block and Its Geological Significance. Geological Bulletin of China, 36(11):2061-2075 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201711016
      Saunders, A. D., Tarney, J., 1984. Geochemical Characteristics of Basaltic Volcanism within Back-Arc Basins. Geological Society, London, Special Publications, 16(1):59-76. https://doi.org/10.1144/gsl.sp.1984.016.01.05
      SBGMR (Sichuan Bureau of Geology and Mineral Resources), 1991. Regional Geology of Sichuan Province. Geological Publishing House, Beijing (in Chinese).
      Sharma, M., 1997. Siberian Traps. In: Mahoney, J.J., Coffin, M.F., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Vol. 100. American Geophysical Union. Geophysical Monograph, New York, 273-295.
      Sun, S.S., McDonough, W.F., 1989. Magmatism in the Ocean Basins, Vol. 42. Geological Society Special Publication, London.
      Sun, W. H., Zhou, M. F., 2008a. The ∼860 Ma, Cordilleran-Type Guandaoshan Dioritic Pluton in the Yangtze Block, SW China:Implications for the Origin of Neoproterozoic Magmatism. The Journal of Geology, 116(3):238-253. https://doi.org/10.1086/587881
      Sun, W. H., Zhou, M. F., Gao, J. F., et al., 2009. Detrital Zircon U-Pb Geochronological and Lu-Hf Isotopic Constraints on the Precambrian Magmatic and Crustal Evolution of the Western Yangtze Block, SW China. Precambrian Research, 172(1/2):99-126. https://doi.org/10.1016/j.precamres.2009.03.010
      Sun, W., Zhou, M., Yan, D., et al., 2008b. Provenance and Tectonic Setting of the Neoproterozoic Yanbian Group, Western Yangtze Block (SW China). Precambrian Research, 167(1/2):213-236. https://doi.org/10.1016/j.precamres.2008.08.001
      Tang, Z.C., Wang, F.X., Zhou, H.W., et al., 2020. Neoproterozoic (~800 Ma) Subduction of Ocean-Continent Transition:Constraint from Arc Magmatic Sequence in Kaihua, Western Zhejiang. Earth Science. 45(1):180-195(in Chinese with English abstract).
      Takagi, T., Orihashi, Y., Naito, K., et al., 1999. Petrology of a Mantle-Derived Rhyolite, Hokkaido, Japan. Chemical Geology, 160(4):425-445. https://doi.org/10.1016/s0009-2541(99)00111-4
      Tamura, Y., Ishizuka, O., Stern, R. J., et al., 2014. Mission Immiscible:Distinct Subduction Components Generate Two Primary Magmas at Pagan Volcano, Mariana Arc. Journal of Petrology, 55(1):63-101. https://doi.org/10.1093/petrology/egt061
      Wang, D. B., Wang, B. D., Yin, F. G., et al., 2019a. Petrogenesis and Tectonic Implications of Late Mesoproterozoic A1- and A2-Type Felsic Lavas from the Huili Group, Southwestern Yangtze Block. Geological Magazine, 156(8):1425-1439. https://doi.org/10.1017/s0016756818000882
      Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2014. Geochemical Zonation across a Neoproterozoic Orogenic Belt:Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242:154-171. https://doi.org/10.1016/j.precamres.2013.12.023
      Wang, Y. J., Zhu, W. G., Huang, H. Q., et al., 2019b. Ca. 1.04 Ga Hot Grenville Granites in the Western Yangtze Block, Southwest China. Precambrian Research, 328:217-234. https://doi.org/10.1016/j.precamres.2019.04.024
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      Wu, G.Y., 2006. Division of the Precambrian in South China in the Light of Key Geological Events. Journal of Stratigraphy, 30(3):271-286(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200603012
      Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1):11-30. https://doi.org/10.1016/0012-821x(80)90116-8
      Yin, F.G., Sun, Z.M., Ren, G.M., et al., 2012. Geological Record of Paleo- and Mesoproterozoic Orogenesis in the Western Margin of Upper Yangtze Block. Acta Geologica Sinica. 86(12):1917-1932(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201212005
      Zhang, C.H., Gao, L.Z., Wu, Z.J., et al., 2007. SHRIMP U-Pb Zircon Age of Tuff from the Kunyang Group in Central Yunnan:Evidence for Grenvillian Orogeny in South China. Chinese Science Bulletin, 52(7):818-824(in Chinese).
      Zhao, J. H., Asimow, P. D., Zhou, M. F., et al., 2017. An Andean-Type Arc System in Rodinia Constrained by the Neoproterozoic Shimian Ophiolite in South China. Precambrian Research, 296:93-111. https://doi.org/10.1016/j.precamres.2017.04.017
      Zhao, J. H., Li, Q. W., Liu, H., et al., 2018. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge-Propagator. Earth-Science Reviews, 187:1-18. https://doi.org/10.1016/j.earscirev.2018.10.004
      Zhao, X. F., Zhou, M. F., Hitzman, M. W., et al., 2012. Late Paleoproterozoic to Early Mesoproterozoic Tangdan Sedimentary Rock-Hosted Strata-Bound Copper Deposit, Yunnan Province, Southwest China. Economic Geology, 107(2):357-375. https://doi.org/10.2113/econgeo.107.2.357
      Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China:Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1/2):57-69. https://doi.org/10.1016/j.precamres.2010.06.021
      Zhang, K.X., Xu, Y.D., He, W.H., et al., 2018. Oceanic and Continental Blocks Distribution during Neoproterozoic Early Qingbaikouan Period (1 000-820 Ma) in China. Earth Science, 43(11):3837-3852(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201811004
      Zhou, G. Y., Wu, Y. B., Li, L., et al., 2018. Identification of Ca. 2.65 Ga TTGs in the Yudongzi Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, 314:240-263. https://doi.org/10.1016/j.precamres.2018.06.011
      Zhou, M., Ma, Y., Yan, D., et al., 2006a. The Yanbian Terrane (Southern Sichuan Province, SW China):A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1/2):19-38. https://doi.org/10.1016/j.precamres.2005.11.002
      Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006b. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1/2):286-300. https://doi.org/10.1016/j.epsl.2006.05.032
      Zhu, G. L., Yu, J. H., Zhou, X. Y., et al., 2019. The Western Boundary between the Yangtze and Cathaysia Blocks, New Constraints from the Pingbian Group Sediments, Southwest South China Block. Precambrian Research, 331:105350. https://doi.org/10.1016/j.precamres.2019.105350
      Zhu, W. G., Zhong, H., Li, Z. X., et al., 2016. SIMS Zircon U-Pb Ages, Geochemistry and Nd-Hf Isotopes of Ca. 1.0 Ga Mafic Dykes and Volcanic Rocks in the Huili Area, SW China:Origin and Tectonic Significance. Precambrian Research, 273:67-89. https://doi.org/10.1016/j.precamres.2015.12.011
      Zhu, Y., Lai, S.C., Qin, J.F., et al., 2019a. Petrogenesis and Geodynamic Implications of Neoproterozoic Gabbro-Diorites, Adakitic Granites, and A-Type Granites in the Southwestern Margin of the Yangtze Block, South China. Journal of Asian Earth Sciences, 183:1367-9120.
      Zhu, Y., Lai, S.C., Qin, J.F., et al., 2019b. Neoproterozoic Peraluminous Granites in the Western Margin of the Yangtze Block, South China:Implications for the Reworking of Mature Continental Crust. Precambrian Research, 201(9):333.
      耿元生, 杨崇辉, 王新社, 等, 2008.扬子地台西缘变质基底演化.北京:北京地大彩印厂, 1-50.
      耿元生, 旷红伟, 柳永清, 等, 2017.扬子地块西、北缘中元古代地层的划分与对比.地质学报, 91(10):2151-2174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201710001
      关俊雷, 郑来林, 刘建辉, 等, 2011.四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义.地质学报, 85(4):482-490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201104004
      李献华, 王选策, 李武显, 等, 2008.等华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷.地球科学, 37(4):382-398. http://www.cnki.com.cn/Article/CJFDTotal-DQHX200804011.htm
      任光明, 庞维华, 潘桂棠, 等, 2017.扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义.地质通报.36(11):2061-2075. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201711016
      四川省地质矿产局, 1991.四川省区域地质志.北京:地质出版社, 1-730.
      唐增才, 汪发祥, 周汉文, 等, 2020.浙西开化地区新元古代(~800 Ma)洋陆俯冲来自活动陆缘弧火山岩序列组合的制约.地球科学, 45(1):180-193. doi: 10.3799/dqkx.2018.244
      吴根耀, 2006.从关键地质事件看华南的前寒武系划分.地层学杂志, 30(3):271-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200603012
      尹福光, 孙志明, 任光明, 等, 2012.上扬子陆块西南缘早-中元古代造山运动的地质记录.地质学报, 86(12):1917-1932.
      张传恒, 高林志, 武振杰, 等, 2007.滇中昆阳群凝灰岩锆石SHRIMP U-Pb年龄:华南格林威而期造山的证据.科学通报, 52(7):818-824.
      张克信, 徐亚东, 何卫红, 等, 2018.中国新元古代青白口纪早期(1 000~820 Ma)洋陆分布.地球科学.43(11):3837-3852. doi: 10.3799/dqkx.2018.339
    • dqkx-45-7-2452-Table1-2.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)

      Article views (2138) PDF downloads(134) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return