• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 7
    Jul.  2020
    Turn off MathJax
    Article Contents
    Liu Guichun, Chen Guangyan, Li Jing, Chen Ke, Sun Bodong, Ma Jinhua, Qian Xin, Zhao Tianyu, 2020. Petrogenesis of Xiangshui Granite from Xiangyun, in the West Margin of Yangtze Block: Zircon U-Pb Geochronology, Geochemical and Sr-Nd Isotope Constraints. Earth Science, 45(7): 2426-2440. doi: 10.3799/dqkx.2020.041
    Citation: Liu Guichun, Chen Guangyan, Li Jing, Chen Ke, Sun Bodong, Ma Jinhua, Qian Xin, Zhao Tianyu, 2020. Petrogenesis of Xiangshui Granite from Xiangyun, in the West Margin of Yangtze Block: Zircon U-Pb Geochronology, Geochemical and Sr-Nd Isotope Constraints. Earth Science, 45(7): 2426-2440. doi: 10.3799/dqkx.2020.041

    Petrogenesis of Xiangshui Granite from Xiangyun, in the West Margin of Yangtze Block: Zircon U-Pb Geochronology, Geochemical and Sr-Nd Isotope Constraints

    doi: 10.3799/dqkx.2020.041
    • Received Date: 2020-03-09
    • Publish Date: 2020-07-15
    • A lot of Neoproterozoic magmatic rocks were reported from west to central Yunnan, while these rocks were regarded that they were formed from different tectonic setting. In this paper, we show some granites keeping well granitic texture from Xiangshui granite batholith in Xiangyun county, including different enclaves such as mafic rocks (olivine gabbro) and diorites. In the field, some rocks of granidiorites, quartz diorites, tonalities were formed with the mixed granitic magma around the mafic rocks. Four similar LA-ICP-MS 206Pb/238U weight mean ages of zircons yield 761.9±4.1 Ma, 761.7±4.2 Ma, 761.3±3.7 Ma and 757.5±5.9 Ma. The granites are characterized by high alkaline, moderate Mg# values (38~57, average 50), low TiO2 and P contents, their trace elements show depleted Ta, Nb, Sr, enrichment LREEs and LILEs, depleted HREEs, and have low εNd(t) values of -2.73 to -4.90. All of the geochemical characters suggest that the granitic laves was the results of partial melt of the ancient crust. The olivine gabbro show low K2O content and total oxide rare earth elements (REEs), slightly to no enrichment LREEs and LILEs, and slightly or no depleted Nb-Ta, Zr-Hf values, but of depleted P, and high Mg# values (71-83, average 77), indicating the origin of these mafic rocks from MORB or the margin MORB melt. The diorites and granidiorites exhibit slightly enrichment LREE and LILE compared to HREE, variable Mg# (45-71, average 56), depleted P element, εNd(t) values of -3.83 to -4.42, slightly to no depleted Ta, Nb, Ti, Sr, P elements, these geochemical values are between those rocks of granites and olivine gabbro, which indicate the result of mix magma of MORB-derived melt and partial melt of ancient crust. In the tectonic diagrams, these rocks are plot into the continental arc field related to subduction of oceanic crust down to the Yangtze block, and the mafic magma of MORB were the result of oceanic crust remelting.

       

    • loading
    • Barker, F., 1979. Trondhjemites, Dacites and Related Rocks. Elsevier Scientific Publishing Company, Amsterdam.
      Cai, Y., Wang, Y., Cawood, P.A., et al., 2014. Neoproterozoic Subduction along the Ailaoshan Zone, South China:Geochronological and Geochemical Evidence from Amphibolite. Precambrian Research, 245:13-28. https://doi.org/10.1016/j.precamres.2014.01.009
      Cai, Y., Wang, Y., Cawood, P.A., et al., 2015. Neoproterozoic Crustal Growth of the Southern Yangtze Block:Geochemical and Zircon U-Pb Geochronological and Lu-Hf Isotopic Evidence of Neoproterozoic Diorite from the Ailaoshan Zone. Precambrian Research, 266:137-149. https://doi.org/10.1016/j.precamres.2015.05.008
      Chappell, B.W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3):535-551. https://doi.org/10.1016/S0024-4937(98)00086-3
      Chen L., Zhen Y. F., 2019. Neoproterozoic Oceanic Slab-Mantle Interaction:Geochemical Evidence from Mesozoic Andesitic Rocks in the Middle and Lower Yangtze Valley. Journal of Earth Science, 44(12):4144-4151(in Chinese with English abstract).
      Chen, X., Liu, J., Fan, W., et al., 2017. Neoproterozoic Granitoids along the Ailao Shan-Red River Belt:Zircon U-Pb Geochronology, Hf Isotope Analysis and Tectonic Implications. Precambrian Research, 299:244-263. https://doi.org/10.1016/j.precamres.2017.06.024
      Cheng, J. X., Luo, J. H., Wu, Y. D., et al., 2014. Geochronology, Geochemistry and Tectonic Significance of the Xiatianba Granite in Northeastern Yunnan. Acta Geologica Sinica, 88(3):337-346 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201403004
      Condie, K.C., 1989. Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary:Identification and Significance. Lithos, 23(1-2):1-18. https://doi.org/10.1016/0024-4937(89)90020-0
      Drummond, M.S., Defant, M.J., Kepezhinskas, P.K., 1996. Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas. Transactions of the Royal Society of Edinburgh Earth Sciences, 87(1-2):205-215. https://doi.org/10.1017/s0263593300006611
      Göncüoglu, M.C., Sayit, K., Tekin, U.K., 2010. Oceanization of the Northern Neotethys:Geochemical Evidence from Ophiolitic Melange Basalts within the İzmir-Ankara Suture Belt, NW Turkey. Lithos, 116:175-187. https://doi.org/10.1016/j.lithos.2010.01.007
      Green, T.H., Pearson, N.J., 1986. Ti-Rich Accessory Phase Saturation in Hydrous Mafic-Felsic Compositions at High P-T. Chemical Geology, 54(3):185-201. https://doi.org/10.1016/0009-2541(86)90136-1
      Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical Characteristics of Collision Zone Magmatism. In: Coward, M.P., Reis, A.C., eds., Collision Tectonics. Geological Society of London Special Publication, London, 67-81.
      Iwamori, H., Richardson, C., Maruyama, S., 2007. Numerical Modeling of Thermal Structure, Circulation of H2O, and Magmatism-Metamorphism in Subduction Zones:Implications for Evolution of Arcs. Gondwana Research, 11:109-119. https://doi.org/10.1016/j.gr.2006.04.010
      Li, W.X., Li, X.H., Li, Z.X., 2005. Neoproterozoic Bimodal Magmatism in the Cathaysia Block of South China and Its Tectonic Significance. Precambrian Research, 136:51-66. https://doi.org/10.1016/j.precamres.2004.09.008
      Li, X., Li, Z., Zhou, H., et al., 2003a. SHRIMP U-Pb Zircon Age, Geochemistry and Nd Isotope of the Guandaoshan Pluton in SW Sichuan:Petrogenesis and Tectonic Significance. Science in China:Earth Sciences, 46:73-83.
      Li, X.H., Zhu, W.G., Zhong, H., et al., 2011. The Tongde Picritic Dikes in the Western Yangtze Block: Evidence for Ca.800 Ma Mantle Plume Magmatism in South China during the Breakup of Rodinia. Institute of Geology And Geophysics, Chinese Academy of Science, Beijing, 509-522(in Chinese with English abstract).
      Li, Z.X., Li, X. H., Kinny, P. D., et al., 2003b. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents:Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122:85-109. doi: 10.1016/S0301-9268(02)00208-5
      Lin, T. H., Chung, S. L., Chiu, H. Y., et al., 2012. Zircon U-Pb and Hf Isotope Constraints from the Ailao Shan-Red River Shear Zone on the Tectonic and Crustal Evolution of Southwestern China. Chemical Geology, 291:23-37. doi: 10.1016/j.chemgeo.2011.11.011
      Liu, Y., Zong, K., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247, 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      Moores, E.M., 1991. Southwest U.S.East Antarctic (SWEAT) Connection:A Hypothesis. Geology, 19:425-428.https://doi.org/10.1130/0091-7613(1991)019 < 0425:SUSEAS > 2.3.CO; 2 doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2
      Nakamura, H., Iwamori, H., 2009. Contribution of Slab-Fluid in Arc Magmas Beneath the Japan Arcs. Gondwana Research, 16:431-445. https://doi.org/10.1016/j.gr.2009.05.004
      Pearce, J.A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19:120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      Qi, X., Santosh, M., Zhao, Y., H et al., 2016. Mid-Neoproterozoic Ridge Subduction and Magmatic Evolution in the Northeastern Margin of the Indochina Block:Evidence from Geochronology and Geochemistry of Calc-Alkaline Plutons. Lithos, 248-251:138-152. https://doi.org/10.1016/j.lithos.2015.12.028
      Sun, S.S., Mcdonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      Wang, G., Xiu, Z. Q., Liu, Y., et al., 2015. Geochemical Elements Characteristics of Granite in Xujie of Mou Ding, Yunnan. Journal of Jilin University (Earth Science Edition), 45:1510-1511 (in Chinese with English abstract).
      Wang, J., Li, X.H., Duan, T.Z., et al., 2003. Zircon SHRIMP U-Pb Dating for the Cangshuipu Volcanic Rocks and Its Implications for the Lower Boundary Age of the Nanhua Strata in South China. Chinese Science Bulletin, 48:1663-1669(in Chinese). doi: 10.1360/03wd0168
      Wang, W., Liu, S., Feng, Y., et al., 2012. Chronology, Petrogenesis and Tectonic Setting of the Neoproterozoic Tongchang Dioritic Pluton at the Northwestern Margin of the Yangtze Block:Constraints from Geochemistry and Zircon U-Pb-Hf Isotopic Systematics. Gondwana Research, 22:699-716. https://doi.org/10.1016/j.gr. 2011.11.015 doi: 10.1016/j.gr.2011.11.015
      Wang, X.C., Li, X.H., Li, W.X., et al., 2007. Ca. 825Ma Komatiitic Basalts in South China:First Evidence for > 1 500℃ Mantle Melts by a Rodinian Mantle Plume. Geology, 35:1103-1106. https://doi.org/10.1130/G23878A.1
      Wang, Y., Zhou, Y., Cai, Y., et al., 2016. Geochronological and Geochemical Constraints on the Petrogenesis of the Ailaoshan Granitic and Migmatite Rocks and Its Implications on Neoproterozoic Subduction along the SW Yangtze Block. Precambrian Research, 283:106-124. https://doi.org/10.1016/j.precamres.2016.07.017
      Yang, Y.N., Wang, X.C., Li, Q.L. et al., 2016. Integrated In-Situ U-Pb Age and Hf-O Analyses of Zircon from Suixian Group in Northern Yangtze:New Insights into the Neoproterozoic Low-δ18O Magmas in the South China Block. Precambrian Research, 273:151-164. doi: 10.1016/j.precamres.2015.12.008
      Zhang, F. F., Wang, X. L., Wang, D., et al., 2017. Neoproterozoic Back Arc Basin on the Southeastern Margin of the Yangtze Block during Rodinia Assembly:New Evidence from Provenance of Detrital Zircons and Geochemistry of Mafic Rocks. Geological Society of America Bulletin, 129:904-919. doi: 10.1130/B31528.1
      Zhang, S. B., Wu, P., Zheng, Y. F., 2019. Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block. Journal of Earth Science, 44(12):4157-4166(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201912026
      Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China:No Connection with the Grenvillian Orogeny. Geology, 39, 299-302. https://doi.org/10.1130/G31701.1
      Zhao, J. H., Zhou, M.F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China):Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152:27-47. https://doi.org/10.1016/j.precamres.2006.09.002
      Zhao, J. X., Chen, Y. L., Li, Z. H., 2006. Zircon U-Pb SHRIMP Dating for the Kangding Complex and Its Geological Significance. Geoscience, 20, 378-385 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200603003
      Zheng, Y. F., 2003. Neoproterozoic Magmatic Activity and Global Change. Chinese Science Bulletin, 48:1639-1656. doi: 10.1360/03wd0342
      Zhou, M.F., Yan, D.P., Wang, C.L., et al., 2006. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth & Planetary Science Letters, 248:286-300. https://doi.org/10.1016/j.epsl.2006.05.032
      Zhou, M.F., Zhao, J.H., Xia, X., et al., 2007. Comment on "Revisiting the "YanbianTerrane":Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China". Precambrian Research, 151:14-30. https://doi.org/10.1016/j.precamres.2006.11.012
      陈龙, 郑永飞, 2019.长江中下游中生代安山质火山岩记录的新元古代大洋板片-地幔相互作用.地球科学, 44(12):4144-4151. doi: 10.3799/dqkx.2019.243
      程佳孝, 罗金海, 武昱东, 等, 2014.滇东北下田坝花岗岩年代学、地球化学及其构造意义.地质学报, 88(3):337-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201403004
      汪刚, 徐争启, 刘瑶, 等, 2015.云南牟定戌街地区花岗岩元素地球化学特征.吉林大学学报:地球科学版, 45:1510-1511.
      张少兵, 吴鹏, 郑永飞, 2019.罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录.地球科学, 44(12):4157-4166. doi: 10.3799/dqkx.2019.252
      赵俊香, 陈岳龙, 李志红, 2006.康定杂岩锆石SHRIMP U-Pb定年及其地质意义.现代地质, 20:378-385. doi: 10.3969/j.issn.1000-8527.2006.03.003
    • dqkx-45-7-2426-Table1-2.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (1494) PDF downloads(97) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return