Citation: | Peng Zhenran, Hu Zhengwang, Wang Linsong, Chen Chao, Fu Zhengyan, 2021. Spatio-Temporal Characteristics of Ice Sheet Melting in Greenland and Contributions to Sea Level Rise from 2003 to 2015. Earth Science, 46(2): 743-758. doi: 10.3799/dqkx.2020.042 |
A, G. , Wahr, J. , Zhong, S. J. , 2013. Computations of the Viscoelastic Response of a 3-D Compressible Earth to Surface Loading: An Application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2): 557-572. https://doi.org/10.1093/gji/ggs030
|
Adhikari, S. , Ivins, E. R. , Larour, E. , 2017. Mass Transport Waves Amplified by Intense Greenland Melt and Detected in Solid Earth Deformation. Geophysical Research Letters, 44(10): 4965-4975. https://doi.org/10.1002/2017gl073478
|
Bamber, J. L. , Layberry, R. L. , Gogineni, S. P. , 2001. A New Ice Thickness and Bed Data Set for the Greenland Ice Sheet: 1. Measurement, Data Reduction, and Errors. Journal of Geophysical Research: Atmospheres, 106(D24): 33773-33780. https://doi.org/10.1029/2001jd900054
|
Bamber, J. L. , Riva, R. E. M. , Vermeersen, B. L. A. , et al. , 2009. Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet. Science, 324(5929): 901-903. https://doi.org/10.1126/science.1169335
|
Beckley, B. D. , Callahan, P. S. , Hancock III, D. W. , et al. , 2017. On the "Cal-Mode" Correction to TOPEX Satellite Altimetry and Its Effect on the Global Mean Sea Level Time Series. Journal of Geophysical Research: Oceans, 122(11): 8371-8384. https://doi.org/10.1002/2017jc013090
|
Boening, C. , Willis, J. K. , Landerer, F. W. , et al. , 2012. The 2011 La Niña: So Strong, the Oceans Fell. Geophysical Research Letters, 39(19): L19602. https://doi.org/10.1029/2012gl053055
|
Bolch, T. , Sandberg Sørensen, L. , Simonsen, S. B. , et al. , 2013. Mass Loss of Greenland's Glaciers and Ice Caps 2003-2008 Revealed from ICESat Laser Altimetry Data. Geophysical Research Letters, 40(5): 875-881. https://doi.org/10.1002/grl.50270
|
Box, J. E. , Fettweis, X. , Stroeve, J. , et al. , 2012. Greenland Ice Sheet Albedo Feedback: Thermodynamics and Atmospheric Drivers. The Cryosphere, 6(4): 821-839. https://doi.org/10.5194/tc-6-821-2012
|
Chen, G. D. , Zhang, S. J. , 2019. Elevation and Volume Change Determination of Greenland Ice Sheet Based on ICESat Observations. Chinese Journal of Geophysics, 62(7): 2417-2428(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201907006.htm
|
Cheng, M. K. , Tapley, B. D. , Ries, J. C. , 2013. Deceleration in the Earth's Oblateness. Journal of Geophysical Research: Solid Earth, 118(2): 740-747. https://doi.org/10.1002/jgrb.50058
|
Dziewonski, A. M. , Anderson, D. L. , 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356. https://doi.org/10.1016/0031-9201(81)90046-7
|
Ettema, J. , van den Broeke, M. R. , van Meijgaard, E. , et al. , 2009. Higher Surface Mass Balance of the Greenland Ice Sheet Revealed by High-Resolution Climate Modeling. Geophysical Research Letters, 36(12): L12501. https://doi.org/10.1029/2009gl038110
|
Farrell, W. E. , 1972. Deformation of the Earth by Surface Loads. Reviews of Geophysics, 10(3): 761-797. https://doi.org/10.1029/rg010i003p00761
|
Farrell, W. E. , Clark, J. A. , 1976. On Postglacial Sea Level. Geophysical Journal International, 46(3): 647-667. https://doi.org/10.1111/j.1365-246x.1976.tb01252.x
|
Fasullo, J. T. , Boening, C. , Landerer, F. W. , et al. , 2013. Australia's Unique Influence on Global Sea Level in 2010-2011. Geophysical Research Letters, 40(16): 4368-4373. https://doi.org/10.1002/grl.50834
|
Forsberg, R. , Sørensen, L. , Simonsen, S. , 2017. Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surveys in Geophysics, 38: 89-104. https://doi.org/10.1007/s10712-016-9398-7
|
Gardner, A. S. , Moholdt, G. , Cogley, J. G. , et al. , 2013. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science, 340(6134): 852-857. https://doi.org/10.1126/science.1234532
|
Hall, D. K. , Comiso, J. C. , DiGirolamo, N. E. , et al. , 2013. Variability in the Surface Temperature and Melt Extent of the Greenland Ice Sheet from MODIS. Geophysical Research Letters, 40(10): 2114-2120. https://doi.org/10.1002/grl.50240
|
Hanna, E. , Huybrechts, P. , Cappelen, J. , et al. , 2011. Greenland Ice Sheet Surface Mass Balance 1870 to 2010 Based on Twentieth Century Reanalysis, and Links with Global Climate Forcing. Journal of Geophysical Research: Atmospheres, 116(D24): D24121. https://doi.org/10.1029/2011jd016387
|
Howat, I. M. , Smith, B. E. , Joughin, I. , et al. , 2008. Rates of Southeast Greenland Ice Volume Loss from Combined ICESat and ASTER Observations. Geophysical Research Letters, 35(17): L17505. https://doi.org/10.1029/2008gl034496
|
Hurkmans, R. T. W. L. , Bamber, J. L. , Davis, C. H. , et al. , 2014. Time-Evolving Mass Loss of the Greenland Ice Sheet from Satellite Altimetry. The Cryosphere, 8: 1725-1740. https://doi.org/10.5194/tc-8-1725-2014
|
Jacob, T. , Wahr, J. , Pfeffer, W. T. , et al. , 2012. Recent Contributions of Glaciers and Ice Caps to Sea Level Rise. Nature, 482(7386): 514-518. https://doi.org/10.1038/nature10847
|
Jentzsch, G., 1997. Earth Tides and Ocean Tidal Loading. In: Wilhelm, H., Zürn, W., Wenzel, H. G., eds., Tidal Phenomena. Springer, Heidelberg.
|
Khan, S. A. , Wahr, J. , Bevis, M. , et al. , 2010. Spread of Ice Mass Loss into Northwest Greenland Observed by GRACE and GPS. Geophysical Research Letters, 37(6): L06501. https://doi.org/10.1029/2010gl042460
|
Liu, L. , Khan, S. A. , van Dam, T. , et al. , 2017. Annual Variations in GPS-Measured Vertical Displacements near Upernavik Isstrøm (Greenland) and Contributions from Surface Mass Loading. Journal of Geophysical Research: Solid Earth, 122(1): 677-691. https://doi.org/10.1002/2016jb013494
|
Lythe, M. B. , Vaughan, D. G. , 2001. BEDMAP: A New Ice Thickness and Subglacial Topographic Model of Antarctica. Journal of Geophysical Research: Solid Earth, 106(B6): 11335-11351. https://doi.org/10.1029/2000jb900449
|
Milne, G. A. , Mitrovica, J. X. , Davis, J. L. , 1999. Near-Field Hydro-Isostasy: The Implementation of a Revised Sea-Level Equation. Geophysical Journal International, 139(2): 464-482. https://doi.org/10.1046/j.1365-246x.1999.00971.x
|
Mitrovica, J. X. , Tamisiea, M. E. , Davis, J. L. , et al. , 2001. Recent Mass Balance of Polar Ice Sheets Inferred from Patterns of Global Sea-Level Change. Nature, 409(6823): 1026-1029. https://doi.org/10.1038/35059054
|
Nghiem, S. V. , Hall, D. K. , Mote, T. L. , et al. , 2012. The Extreme Melt across the Greenland Ice Sheet in 2012. Geophysical Research Letters, 39(20): L20502. https://doi.org/10.1029/2012gl053611
|
Noël, B. , van de Berg, W. J. , Machguth, H. , et al. , 2016. A Daily, 1 km Resolution Data Set of Downscaled Greenland Ice Sheet Surface Mass Balance (1958-2015). The Cryosphere, 10(5): 2361-2377. https://doi.org/10.5194/tc-10-2361-2016
|
Noël, B. , van de Berg, W. J. , van Wessem, J. M. , et al. , 2018. Modelling the Climate and Surface Mass Balance of Polar Ice Sheets Using RACMO2-Part 1: Greenland (1958-2016). The Cryosphere, 12(3): 811-831. https://doi.org/10.5194/tc-12-811-2018
|
Peltier, W. R. , Andrews, J. T. , 1976. Glacial-Isostatic Adjustment-I. The Forward Problem. Geophysical Journal of the Royal Astronomical Society, 46(3): 605-646. https://doi.org/10.1111/j.1365-246x.1976.tb01251.x
|
Ran, J. , Ditmar, P. , Klees, R. , et al. , 2018. Statistically Optimal Estimation of Greenland Ice Sheet Mass Variations from GRACE Monthly Solutions Using an Improved Mascon Approach. Journal of Geodesy, 92(3): 299-319. https://doi.org/10.1007/s00190-017-1063-5
|
Rignot, E. , Velicogna, I. , van den Broeke, M. R. , et al. , 2011. Acceleration of the Contribution of the Greenland and Antarctic Ice Sheets to Sea Level Rise. Geophysical Research Letters, 38(5): L05503. https://doi.org/10.1029/2011gl046583
|
Rodell, M. , Houser, P. R. , Jambor, U. , et al. , 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3): 381-394. https://doi.org/10.1175/bams-85-3-381
|
Schrama, E. J. O. , Wouters, B. , Rietbroek, R. , 2014. A Mascon Approach to Assess Ice Sheet and Glacier Mass Balances and Their Uncertainties from GRACE Data. Journal of Geophysical Research: Solid Earth, 119(7): 6048-6066. https://doi.org/10.1002/2013jb010923
|
Shepherd, A. , Ivins, E. R. , A, G. , et al. , 2012. A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 338(6111): 1183-1189. https://doi.org/10.1126/science.1228102
|
Sutterley, T. C. , Velicogna, I. , Csatho, B. , et al. , 2014. Evaluating Greenland Glacial Isostatic Adjustment Corrections Using GRACE, Altimetry and Surface Mass Balance Data. Environmental Research Letters, 9(1): 014004. https://doi.org/10.1088/1748-9326/9/1/014004
|
Swenson, S. , Chambers, D. , Wahr, J. , 2008. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. Journal of Geophysical Research: Solid Earth, 113(B8): B08410. https://doi.org/10.1029/2007jb005338
|
Swenson, S. , Wahr, J. , 2002. Methods for Inferring Regional Surface-Mass Anomalies from Gravity Recovery and Climate Experiment (GRACE) Measurements of Time-Variable Gravity. Journal of Geophysical Research: Solid Earth, 107(B9): 2193. doi: 10.1029/2001JB000576/full
|
Syed, T. H. , Famiglietti, J. S. , Rodell, M. , et al. , 2008. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS. Water Resources Research, 44(2): W02433. https://doi.org/10.1029/2006wr005779
|
Tamisiea, M. E. , Hill, E. M. , Ponte, R. M. , et al. , 2010. Impact of Self-Attraction and Loading on the Annual Cycle in Sea Level. Journal of Geophysical Research Atmospheres: Oceans, 115(C7): C07004. https://doi.org/10.1029/2009jc005687
|
Tapley, B. D. , Bettadpur, S. , Ries, J. C. , et al. , 2004. GRACE Measurements of Mass Variability in the Earth System. Science, 305(5683): 503-505. https://doi.org/10.1126/science.1099192
|
van Angelen, J. H. , van den Broeke, M. R. , Wouters, B. , et al. , 2014. Contemporary (1960-2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet. Surveys in Geophysics, 35(5): 1155-1174. https://doi.org/10.1007/s10712-013-9261-z
|
van den Broeke, M. R. , Bamber, J. , Ettema, J. , et al. , 2009. Partitioning Recent Greenland Mass Loss. Science, 326(5955): 984-986. https://doi.org/10.1126/science.1178176
|
van den Broeke, M. R. , Enderlin, E. M. , Howat, I. M. , et al. , 2016. On the Recent Contribution of the Greenland Ice Sheet to Sea Level Change. The Cryosphere, 10(5): 1933-1946. https://doi.org/10.5194/tc-10-1933-2016
|
Velicogna, I. , Sutterley, T. C. , van den Broeke, M. R. , 2014. Regional Acceleration in Ice Mass Loss from Greenland and Antarctica Using GRACE Time-Variable Gravity Data. Geophysical Research Letters, 41(22): 8130-8137. https://doi.org/10.1002/2014gl061052
|
Velicogna, I. , Wahr, J. , 2006. Acceleration of Greenland Ice Mass Loss in Spring 2004. Nature, 443(7109): 329-331. https://doi.org/10.1038/nature05168
|
Velicogna, I. , Wahr, J. , 2013. Time-Variable Gravity Observations of Ice Sheet Mass Balance: Precision and Limitations of the GRACE Satellite Data. Geophysical Research Letters, 40(12): 3055-3063. https://doi.org/10.1002/grl.50527
|
Vishwakarma, B. D. , Devaraju, B. , Sneeuw, N. , 2016. Minimizing the Effects of Filtering on Catchment Scale GRACE Solutions. Water Resources Research, 52(8): 5868-5890. https://doi.org/10.1002/2016wr018960
|
Vishwakarma, B. D. , Horwath, M. , Devaraju, B. , et al. , 2017. A Data-Driven Approach for Repairing the Hydrological Catchment Signal Damage Due to Filtering of GRACE Products. Water Resources Research, 53(11): 9824-9844. https://doi.org/10.1002/2017wr021150
|
Wahr, J. M., 2007. Time Variable Gravity from Satellites. In: Schubert, G., ed., Treatise on Geophysics. Elsevier, Amsterdam. https://doi.org/10.1016/b978-044452748-6.00176-0
|
Wang, L. S. , Chen, C. , Ma, X. , et al. , 2018. Sea Level Fingerprints of Ice Sheet Melting and Its Impacts on Monitoring Results of GRACE. Chinese Journal of Geophysics, 61(7): 2679-2690(in Chinese with English abstract). http://www.researchgate.net/publication/328824612_Sea_level_fingerprints_of_ice_sheet_melting_and_its_impacts_on_monitoring_results_of_GRACE
|
Wang, L. S. , Khan, S. A. , Bevis, M. , et al. , 2019. Downscaling GRACE Predictions of the Crustal Response to the Present-Day Mass Changes in Greenland. Journal of Geophysical Research: Solid Earth, 124(5): 5134-5152. https://doi.org/10.1029/2018jb016883
|
WCRP Global Sea Level Budget Group, 2018. Global Sea-Level Budget 1993-Present. Earth System Science Data, 10(3): 1551-1590. https://doi.org/10.5194/essd-10-1551-2018
|
Yang, K. , 2013. The Progress of Greenland Ice Sheet Surface Ablation Research. Journal of Glaciology and Geocryology, 35(1): 101-109(in Chinese with English abstract). http://www.researchgate.net/publication/260230405_The_Progress_of_Greenland_Ice_Sheet_Surface_Ablation_Research
|
Zhang, Q. Q. , Pan, Y. , Gong, H. L. , et al. , 2019. The Impact of Different GRACE Filtering Methods on Inversing Terrestrial Water Storage Change in Southwestern Karst Area. Earth Science, 44(9): 2955-2962(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909014.htm
|
Zwally, H. J. , Li, J. , Brenner, A. C. , et al. , 2011. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming: 2003-07 versus 1992-2002. Journal of Glaciology, 57(201): 88-102. https://doi.org/10.3189/002214311795306682
|
陈国栋, 张胜军, 2019. 利用ICESat数据确定格陵兰冰盖高程和体积变化. 地球物理学报, 62(7): 2417-2428. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201907006.htm
|
王林松, 陈超, 马险, 等, 2018. 冰盖消融的海平面指纹变化及其对GRACE监测结果的影响. 地球物理学报, 61(7): 2679-2690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807004.htm
|
杨康, 2013. 格陵兰冰盖表面消融研究进展. 冰川冻土, 35(1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301013.htm
|
张青全, 潘云, 宫辉力, 等, 2019. 不同滤波方法对GRACE反演西南岩溶区陆地水储量变化的影响. 地球科学, 44(9): 2955-2962. doi: 10.3799/dqkx.2019.153
|