• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 2
    Feb.  2021
    Turn off MathJax
    Article Contents
    Wang Jing, Xie Zuoming, Wang Jia, Yang Yang, Liu Enyang, 2021. Influence of Bioreduction of Arsenic-Bearing Goethite by Bacteria under Sulfur Mediation on Migration and Transformation of Arsenic. Earth Science, 46(2): 642-651. doi: 10.3799/dqkx.2020.054
    Citation: Wang Jing, Xie Zuoming, Wang Jia, Yang Yang, Liu Enyang, 2021. Influence of Bioreduction of Arsenic-Bearing Goethite by Bacteria under Sulfur Mediation on Migration and Transformation of Arsenic. Earth Science, 46(2): 642-651. doi: 10.3799/dqkx.2020.054

    Influence of Bioreduction of Arsenic-Bearing Goethite by Bacteria under Sulfur Mediation on Migration and Transformation of Arsenic

    doi: 10.3799/dqkx.2020.054
    • Received Date: 2020-01-20
    • Publish Date: 2021-02-15
    • Sulfur plays an important role in the biogeochemical cycle of iron and arsenic. But the effect of S(0),an intermediate product of the sulfur cycle in groundwater systems,on biotransformation of iron and arsenic remains unexplored. Laboratory simulation experiments were conducted to investigate the reduction of Fe(III) and As(V) in the liquid phase and arsenic-bearing goethite by bacteria D2201 with sulfur. The results show that 74% of Fe(III) in the liquid phase were reduced by the strain D2201 with strong iron-reducing potential. When sulfur was added,S(-II) from the bacteria reducing S(0) increased the iron reduction rate to 94%. However,the bacterial reduction of arsenic was not accelerated significantly by added sulfur. Fe(III) in arsenic-bearing goethite was reduced rapidly by the strain D2201 at the beginning of the experiment. In the experiment,32.12 μmol/L Fe(II) was released in the liquid phase. The added sulfur enhanced the bacterial reduction of arsenic-bearing goethite,and the released Fe(II) increased to 284.13 μmol/L. At the same time,the concentration of arsenic released into solution increased 1.6 times. The results indicate that sulfur significantly promoted the bacterial reduction and dissolution of arsenic-bearing goethite and accelerated the release of arsenic. It was shown by XRD and SEM-EDS that the mineral phase of iron mineral reduced by the strain D2201 was not changed. Under the condition of sulfur,the mineral only has a certain degree of agglomeration,not transform to other minerals. And arsenic was not adsorbed by the mineral once again.

       

    • loading
    • dos Santos Afonso, M. , Stumm, W. , 1992. Reductive Dissolution of Iron (III) (Hydr)Oxides by Hydrogen Sulfide. Langmuir, 8(6): 1671-1675. https://doi.org/10.1021/la00042a030
      Brennan, E. W. , Lindsay, W. L. , 1998. Reduction and Oxidation Effect on the Solubility and Transformation of Iron Oxides. Soil Science Society of America Journal, 62(4): 930-937. https://doi.org/10.2136/sssaj1998.03615995006200040012x
      Burton, E. D. , Johnston, S. G. , Planer-Friedrich, B. , 2013. Coupling of Arsenic Mobility to Sulfur Transformations during Microbial Sulfate Reduction in the Presence and Absence of Humic Acid. Chemical Geology, 343: 12-24. https://doi.org/10.1016/j.chemgeo.2013.02.005
      Burton, E. D. , Johnston, S. G. , Kocar, B. D. , 2014. Arsenic Mobility during Flooding of Contaminated Soil: The Effect of Microbial Sulfate Reduction. Environmental Science & Technology, 48(23): 13660-13667. https://doi.org/10.1021/es503963k
      Couture, R. M. , van Cappellen, P. , 2011. Reassessing the Role of Sulfur Geochemistry on Arsenic Speciation in Reducing Environments. Journal of Hazardous Materials, 189(3): 647-652. https://doi.org/10.1016/j.jhazmat.2011.02.029
      Fan, L. J. , Zhao, F. H. , Liu, J. , et al. , 2018. The As Behavior of Natural Arsenical-Containing Colloidal Ferric Oxyhydroxide Reacted with Sulfate Reducing Bacteria. Chemical Engineering Journal, 332: 183-191. https://doi.org/10.1016/j.cej.2017.09.078
      Flynn, T. M. , O'Loughlin, E. J. , Mishra, B. , et al. , 2014. Sulfur-Mediated Electron Shuttling during Bacterial Iron Reduction. Science, 344(6187): 1039-1042. https://doi.org/10.1126/science.1252066
      Hedderich, R. , Klimmek, O. , Kröger, A. , et al. , 1998. Anaerobic Respiration with Elemental Sulfur and with Disulfides. FEMS Microbiology Reviews, 22(5): 353-381. https://doi.org/10.1016/s0168-6445(98)00035-7
      Huang, F. G. , Jia, S. Y. , Liu, Y. , et al. , 2015. Reductive Dissolution of Ferrihydrite with the Release of As(V) in the Presence of Dissolved S(-II). Journal of Hazardous Materials, 286: 291-297. https://doi.org/10.1016/j.jhazmat.2014.12.035
      Kirk, M. F. , Roden, E. E. , Crossey, L. J. , et al. , 2010. Experimental Analysis of Arsenic Precipitation during Microbial Sulfate and Iron Reduction in Model Aquifer Sediment Reactors. Geochimica et Cosmochimica Acta, 74(9): 2538-2555. https://doi.org/10.1016/j.gca.2010.02.002
      Knappová, M. , Drahota, P. , Falteisek, L. , et al. , 2019. Microbial Sulfidogenesis of Arsenic in Naturally Contaminated Wetland Soil. Geochimica et Cosmochimica Acta, 267: 33-50. https://doi.org/10.1016/j.gca.2019.09.021
      Le, X. C. , Yalcin, S. , Ma, M. S. , 2000. Speciation of Submicrogram Per Liter Levels of Arsenic in Water: On-Site Species Separation Integrated with Sample Collection. Environmental Science & Technology, 34(11): 2342-2347. https://doi.org/10.1021/es991203u
      Li, Y. R. , Xu, L. , Shi, P. , 2018. Discussion on the Determination of Sulfide Content in the Water by Methylene Blue Spectrophometry. Environmental Science and Technology, 31(4): 57-59 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JSHJ201804011.htm
      Liu, G. F. , Zhu, J. Q. , Yu, H. L. , et al. , 2018. Review on Electron-Shuttle-Mediated Microbial Reduction of Iron Oxides Minerals. Earth Science, 43(Suppl. 1): 157-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1016.htm
      Ma, J. , Guo, H. M. , Lei, M. , 2017. Disparity of Adsorbed Arsenic Species and Fractions on the Soil and Soil Colloids. Procedia Earth and Planetary Science, 17: 642-645. https://doi.org/10.1016/j.proeps.2016.12.172
      Mitchell, V. L. , 2014. Health Risks Associated with Chronic Exposures to Arsenic in the Environment. Reviews in Mineralogy and Geochemistry, 79(1): 435-449. https://doi.org/10.2138/rmg.2014.79.8
      Moon, H. S. , Kim, B. A. , Hyun, S. P. , et al. , 2017. Effect of the Redox Dynamics on Microbial-Mediated as Transformation Coupled with Fe and S in Flow-through Sediment Columns. Journal of Hazardous Materials, 329: 280-289. https://doi.org/10.1016/j.jhazmat.2017.01.034
      Muehe, E. M. , Scheer, L. , Daus, B. , et al. , 2013. Fate of Arsenic during Microbial Reduction of Biogenic versus Abiogenic As-Fe(III) -Mineral Coprecipitates. Environmental Science & Technology, 47(15): 8297-8307. https://doi.org/10.1021/es400801z
      Nealson, K. H. , 1997. Sediment Bacteria: Who's There, What are They Doing, and What's New? Annual Review of Earth and Planetary Sciences, 25(1): 403-434. https://doi.org/10.1146/annurev.earth.25.1.403
      Newman, D. K. , Kennedy, E. K. , Coates, J. D. , et al. , 1997. Dissimilatory Arsenate and Sulfate Reduction in Desulfotomaculum auripigmentum sp. nov. . Archives of Microbiology, 168(5): 380-388. https://doi.org/10.1007/s002030050512
      Ouyang, B. J. , Lu, X. C. , Li, J. , et al. , 2019. Microbial Reductive Transformation of Iron-Rich Tailings in a Column Reactor and Its Environmental Implications to Arsenic Reactive Transport in Mining Tailings. Science of the Total Environment, 670: 1008-1018. https://doi.org/10.1016/j.scitotenv.2019.03.285
      Pedersen, H. D. , Postma, D. , Jakobsen, R. , 2006. Release of Arsenic Associated with the Reduction and Transformation of Iron Oxides. Geochimica et Cosmochimica Acta, 70(16): 4116-4129. https://doi.org/10.1016/j.gca.2006.06.1370
      Poulton, S. W. , Krom, M. D. , Raiswell, R. , 2004. A Revised Scheme for the Reactivity of Iron (Oxyhydr) Oxide Minerals towards Dissolved Sulfide. Geochimica et Cosmochimica Acta, 68(18): 3703-3715. https://doi.org/10.1016/j.gca.2004.03.012
      Rochette, E. A. , Bostick, B. C. , Li, G. C. , et al. , 2000. Kinetics of Arsenate Reduction by Dissolved Sulfide. Environmental Science & Technology, 34(22): 4714-4720. https://doi.org/10.1021/es000963y
      Roden, E. E. , Zachara, J. M. , 1996. Microbial Reduction of Crystalline Iron (III) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth. Environmental Science & Technology, 30(5): 1618-1628. https://doi.org/10.1021/es9506216
      Schwertmann, U., Cornell, R., 2000. Iron Oxides in the Laboratory: Preparation and Characterization. Wiley-VCH, Weinheim.
      Serrano, J. , Leiva, E. , 2017. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters. Water, 9(12): 994. https://doi.org/10.3390/w9120994
      Song, X. Q. , Peng, Q. , Wang, W. , et al. , 2019. Analysis of Environmental Background Values of Chloride and Sulfate in Shallow Groundwater in Karst Area of Guizhou. Earth Science, 44(11): 3926-3938 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911027.htm
      Sun, J. , Quicksall, A. N. , Chillrud, S. N. , et al. , 2016. Arsenic Mobilization from Sediments in Microcosms under Sulfate Reduction. Chemosphere, 153: 254-261. https://doi.org/10.1016/j.chemosphere.2016.02.117
      Thamdrup, B. , Finster, K. , Hansen, J. W. , et al. , 1993. Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese. Applied and Environmental Microbiology, 59(1): 101-108. https://doi.org/10.1128/aem.59.1.101-108.1993
      Viollier, E. , Inglett, P. W. , Hunter, K. , et al. , 2000. The Ferrozine Method Revisited: Fe(II)/Fe(III) Determination in Natural Waters. Applied Geochemistry, 15(6): 785-790. https://doi.org/10.1016/s0883-2927(99)00097-9
      Wang, Y. X. , Su, C. L. , Xie, X. J. , et al. , 2010. The Genesis of High Arsenic Groundwater: A Case Study in Datong Basin. Geology in China, 37(3): 771-780 (in Chinese with English abstract). http://www.researchgate.net/publication/285107958_The_genesis_of_high_arsenic_groundwater_a_case_study_in_Datong_basin
      Xu, X. W. , Wang, P. , Zhang, J. , et al. , 2019. Microbial Sulfate Reduction Decreases Arsenic Mobilization in Flooded Paddy Soils with High Potential for Microbial Fe Reduction. Environmental Pollution, 251: 952-960. https://doi.org/10.1016/j.envpol.2019.05.086
      Yang, C. L. , Li, S. Y. , Liu, R. B. , et al. , 2015. Effect of Reductive Dissolution of Iron (Hydr)Oxides on Arsenic Behavior in a Water-Sediment System: First Release, Then Adsorption. Ecological Engineering, 83: 176-183. https://doi.org/10.1016/j.ecoleng.2015.06.018
      Yang, J. , Zhu, Y. G. , 2009. Progress in Study of Mechanisms of Microbial Arsenic Transformation in Environment. Journal of Ecotoxicology, 4(6): 761-769 (in Chinese with English abstract).
      Ye, L. , Wang, L. Y. , Jing, C. Y. , 2020. Biotransformation of Adsorbed Arsenic on Iron Minerals by Coexisting Arsenate-Reducing and Arsenite-Oxidizing Bacteria. Environmental Pollution, 256: 113471. https://doi.org/10.1016/j.envpol.2019.113471
      Ye, L. H. , 2019. Experimental Inquiry on the Reaction of Fe3+ and S2-. Chinese Journal of Chemical Education, 40(1): 74-77 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-journal-chemical-education_thesis/0201271830403.html
      Zhang, J. W. , Ma, T. , Yan, Y. N. , et al. , 2018. Effects of Fe-S-As Coupled Redox Processes on Arsenic Mobilization in Shallow Aquifers of Datong Basin, Northern China. Environmental Pollution, 237: 28-38. https://doi.org/10.1016/j.envpol.2018.01.092
      Zhang, X. , Chen, T. H. , Wang, J. , et al. , 2018. Influence of Iron Oxides on Methanogenic Process of Organic Matter and Related Mechanism. Earth Science, 43(Suppl. 1): 136-144 (in Chinese with English abstract).
      Zhao, Z. X. , Wang, S. F. , Jia, Y. F. , 2017. Effect of Sulfide on As(III) and As(V) Sequestration by Ferrihydrite. Chemosphere, 185: 321-328. https://doi.org/10.1016/j.chemosphere.2017.06.134
      Zhou, J. M. , Chen, S. , Liu, J. , et al. , 2018. Adsorption Kinetic and Species Variation of Arsenic for As(V) Removal by Biologically Mackinawite (FeS). Chemical Engineering Journal, 354: 237-244. https://doi.org/10.1016/j.cej.2018.08.004
      李艳荣, 徐蕾, 师培, 2018. 采用亚甲基蓝分光光度法测定水中硫化物的探讨. 环境科技, 31(4): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JSHJ201804011.htm
      柳广飞, 朱佳琪, 于华莉, 等, 2018. 电子穿梭体介导微生物还原铁氧化物的研究进展. 地球科学, 43(增刊1): 157-170. doi: 10.3799/dqkx.2018.590
      宋小庆, 彭钦, 王伟, 等, 2019. 贵州岩溶区浅层地下水氯化物及硫酸盐环境背景值. 地球科学, 44(11): 3926-3938. doi: 10.3799/dqkx.2019.166
      王焰新, 苏春利, 谢先军, 等, 2010. 大同盆地地下水砷异常及其成因研究. 中国地质, 37(3): 771-780. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201003034.htm
      杨婧, 朱永官, 2009. 微生物砷代谢机制的研究进展. 生态毒理学报, 4(6): 761-769. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL200906001.htm
      叶礼华, 2019. 三价铁离子与硫离子反应的实验探究. 化学教育(中英文), 40(1): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-FXJJ201901019.htm
      张勋, 陈天虎, 王进, 等, 2018. 铁氧化物对有机质厌氧产甲烷过程的影响及其机制. 地球科学, 43(增刊1): 136-144. doi: 10.3799/dqkx.2018.545
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (1780) PDF downloads(62) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return