• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 2
    Feb.  2021
    Turn off MathJax
    Article Contents
    Tian Jie, Song Jun, Ma Benjun, Wu Shiguo, Lü Fuliang, 2021. Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon. Earth Science, 46(2): 708-718. doi: 10.3799/dqkx.2020.062
    Citation: Tian Jie, Song Jun, Ma Benjun, Wu Shiguo, Lü Fuliang, 2021. Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon. Earth Science, 46(2): 708-718. doi: 10.3799/dqkx.2020.062

    Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon

    doi: 10.3799/dqkx.2020.062
    • Received Date: 2019-11-28
    • Publish Date: 2021-02-15
    • The Zhongjian Canyon is segmented, but the key geomorphic features of the segmentation, the sedimentary filling of each segment and its controlling factors lack detailed description and systematic demonstration. The integrated analysis of high-resolution 2D/3D seismic data and bathymetric data were used to study the geomorphology and sedimentary features of the Zhongjian Canyon, and the main controlling factors of the sedimentation process in both of the north and south segmentations of the Zhongjian Canyon are summarized. The Zhongjian Canyon extends in NW direction between the Guangle and Xisha uplifts, a knick point as the high point near the Huaguang reef separates the Zhongjian Canyon into southern and northern segmentations. The sedimentary system in the northern segmentation of the Zhongjian Canyon consists of gravity flow deposits (channels, sheets and slumps) and bottom current deposits (drifters, moats and troughs), and the northern segmentation is dominated by gravity channels and submarine fans. Sedimentary system of the northern segmentation is controlled by the interaction between bottom currents and gravity flows, of which the bottom currents came out in Middle Miocene, reworking the gravity channels, leading to migration of the axes or asymmetry wings; gravity flows became weakened while bottom currents strengthened after Pliocene, and sediment waves and drift bodies are widely developed. The channel in the southern segmentation of the canyon shows a depositional cycle of erosion-deposition-abandonment, and no bottom flow deposition was observed. The relative sea level changes, leading to the change of carbonate productivity, affect the provenance supply, so the highstand shedding of carbonate platform promotes the development of channel at high sea level.

       

    • loading
    • Betzler, C. , Fürstenau, J. , Lüdmann, T. , et al. , 2013. Sea-Level and Ocean-Current Control on Carbonate-Platform Growth, Maldives, Indian Ocean. Basin Research, 25(2): 172-196. https://doi.org/10.1111/j.1365-2117.2012.00554.x
      Chen, H. , Xie, X. N. , Mao, K. N. , et al. , 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z
      Chen, H. , Xie, X. N. , van Rooij, D. , et al. , 2014. Depositional Characteristics and Processes of Alongslope Currents Related to a Seamount on the Northwestern Margin of the Northwest Sub-Basin, South China Sea. Marine Geology, 355: 36-53. https://doi.org/10.1016/j.margeo.2014.05.008
      Cronin, B. T. , Akhmetzhanov, A. M. , Mazzini, A. , et al. , 2005. Morphology, Evolution and Fill: Implications for Sand and Mud Distribution in Filling Deep-Water Canyons and Slope Channel Complexes. Sedimentary Geology, 179(1-2): 71-97. https://doi.org/10.1016/j.sedgeo.2005.04.013
      Fenner, P. , Kelling, G. , Stanley, D. J. , 1971. Bottom Currents in Wilmington Submarine Canyon. Nature Physical Science, 229(2): 52-54. https://doi.org/10.1038/physci229052a0
      Glaser, K. S. , Droxler, A. W. , 1991. High Production and Highstand Shedding from Deeply Submerged Carbonate Banks, Northern Nicaragua Rise. SEPM Journal of Sedimentary Research, 61(1): 128-142. https://doi.org/10.1306/d42676a4-2b26-11d7-8648000102c1865d
      Gong, C. L. , Wang, Y. M. , Zhu, W. L. , et al. , 2013. Upper Miocene to Quaternary Unidirectionally Migrating Deep-Water Channels in the Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 97(2): 285-308. https://doi.org/10.1306/07121211159
      Hall, R. , 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367-9120(01)00069-4
      He, Y. , Zhong, G. F. , Wang, L. L. , et al. , 2014. Characteristics and Occurrence of Submarine Canyon-Associated Landslides in the Middle of the Northern Continental Slope, South China Sea. Marine and Petroleum Geology, 57: 546-560. https://doi.org/10.1016/j.marpetgeo.2014.07.003
      Klaucke, I. , Masson, D. G. , Kenyon, N. H. , et al. , 2004. Sedimentary Processes of the Lower Monterey Fan Channel and Channel-Mouth Lobe. Marine Geology, 206(1-4): 181-198. https://doi.org/10.1016/j.margeo.2004.02.006
      Lewis, K. B. , Pantin, H. M. , 2002. Channel-Axis, Overbank and Drift Sediment Waves in the Southern Hikurangi Trough, New Zealand. Marine Geology, 192(1-3): 123-151. https://doi.org/10.1016/s0025-3227(02)00552-2
      Li, J. , Li, W. , Alves, T. M. , et al. , 2019. Different Origins of Seafloor Undulations in a Submarine Canyon System, Northern South China Sea, Based on Their Seismic Character and Relative Location. Marine Geology, 413: 99-111. https://doi.org/10.1016/j.margeo.2019.04.007
      Liu, C. S. , Lundberg, N. , Reed, D. L. , et al. , 1993. Morphological and Seismic Characteristics of the Kaoping Submarine Canyon. Marine Geology, 111(1-2): 93-108. https://doi.org/10.1016/0025-3227(93)90190-7
      Liu, J. , Su, M. , Qiao, S. H. , et al. , 2016. Forming Mechanism of the Slope-Confined Submarine Canyons in the Baiyun Sag, Pearl River Mouth Basin. Acta Sedimentologica Sinica, 34(5): 940-950(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201605013.htm
      Lu, Y. T. , Li, W. , Wu, S. G. , et al. , 2018. Morphology, Architecture, and Evolutionary Processes of the Zhongjian Canyon between Two Carbonate Platforms, South China Sea. Interpretation, 6(4): 1-15. https://doi.org/10.1190/int-2017-0222.1
      Lüdmann, T. , Wong, H. K. , Berglar, K. , 2005. Upward Flow of North Pacific Deep Water in the Northern South China Sea as Deduced from the Occurrence of Drift Sediments. Geophysical Research Letters, 32(5): L05614. https://doi.org/10.1029/2004gl021967
      Luo, W. D. , Zhou, J. , Li, X. J. , et al. , 2018. Morphology and Structure and Evolution of West Basin Canyon, South China Sea. Earth Science, 43(6): 2172-2183(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806029.htm
      Migeon, S. , Savoye, B. , Babonneau, N. , et al. , 2004. Processes of Sediment-Wave Construction along the Present Zaire Deep-Sea Meandering Channel: Role of Meanders and Flow Stripping. Journal of Sedimentary Research, 74(4): 580-598. https://doi.org/10.1306/091603740580
      Mulder, T. , Ducassou, E. , Hanquiez, V. , et al. , 2019. Contour Current Imprints and Contourite Drifts in the Bahamian Archipelago. Sedimentology, 66(4): 1192-1221. https://doi.org/10.1111/sed.12587
      Posamentier, H. W., Vail, P. R., 1988. Eustatic Controls on Clastic Deposition II: Sequence and Systems Tract Models. In: Wilgus, C.K., Hastings, B.S., Posamentier, H.W., et al., eds., Sea-Level Changes. SEPM Society for Sedimentary Geology, Tulsa. https://doi.org/10.2110/pec.88.01.0125
      Puga-Bernabéu, Á. , Webster, J. M. , Beaman, R. J. , et al. , 2011. Morphology and Controls on the Evolution of a Mixed Carbonate-Siliciclastic Submarine Canyon System, Great Barrier Reef Margin, North-Eastern Australia. Marine Geology, 289(1-4): 100-116. https://doi.org/10.1016/j.margeo.2011.09.013
      Puga-Bernabéu, Á. , Webster, J. M. , Beaman, R. J. , et al. , 2013. Variation in Canyon Morphology on the Great Barrier Reef Margin, North-Eastern Australia: The Influence of Slope and Barrier Reefs. Geomorphology, 191: 35-50. https://doi.org/10.1016/j.geomorph.2013.03.001
      Schwarz, E. , Arnott, R. W. C. , 2007. Anatomy and Evolution of a Slope Channel-Complex Set (Neoproterozoic Isaac Formation, Windermere Supergroup, Southern Canadian Cordillera): Implications for Reservoir Characterization. Journal of Sedimentary Research, 77(2): 89-109. https://doi.org/10.2110/jsr.2007.015
      Su, M. , Xie, X. N. , Li, J. L. , et al. , 2011. Gravity Flow on Slope and Abyssal Systems in the Qiongdongnan Basin, Northern South China Sea. Acta Geologica Sinica, 85(1): 243-253. https://doi.org/10.1111/j.1755-6724.2011.00394.x
      Su, M. , Xie, X. N. , Xie, Y. H. , et al. , 2014. The Segmentations and the Significances of the Central Canyon System in the Qiongdongnan Basin, Northern South China Sea. Journal of Asian Earth Sciences, 79: 552-563. https://doi.org/10.1016/j.jseaes.2012.12.038
      Sun, M. J. , Gao, H. F. , Li, X. J. , 2018. Sedimentary Characteristics and Origin of Taitung Canyon in Eastern Waters of Taiwan Island. Earth Science, 43(10): 3709-3718(in Chinese with English abstract). http://www.researchgate.net/publication/329983998_Sedimentary_Characteristics_and_Origin_of_Taitung_Canyon_in_Eastern_Waters_of_Taiwan_Island
      Sun, Q. L. , Cartwright, J. , Lüdmann, T. , et al. , 2017. Three-Dimensional Seismic Characterization of a Complex Sediment Drift in the South China Sea: Evidence for Unsteady Flow Regime. Sedimentology, 64(3): 832-853. https://doi.org/10.1111/sed.12330
      Tian, J. , Wu, S. G. , Lü, F. , et al. , 2015. Middle Miocene Mound-Shaped Sediment Packages on the Slope of the Xisha Carbonate Platforms, South China Sea: Combined Result of Gravity Flow and Bottom Current. Deep Sea Research Part II: Topical Studies in Oceanography, 122: 172-184. https://doi.org/10.1016/j.dsr2.2015.06.016
      Tian, J. , Wu, S. G. , Wang, D. W. , et al. , 2016. Characteristics of Periplatform Channels of the Xisha Area, Northern South China Sea. Marine Sciences, 40(6): 101-109(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYKX201606015.htm
      Tournadour, E. , Mulder, T. , Borgomano, J. , et al. , 2017. Submarine Canyon Morphologies and Evolution in Modern Carbonate Settings: The Northern Slope of Little Bahama Bank, Bahamas. Marine Geology, 391: 76-97. https://doi.org/10.1016/j.margeo.2017.07.014
      Viana, A. R. , Faugères, J. C. , Stow, D. A. V. , 1998. Bottom-Current-Controlled Sand Deposits: A Review of Modern Shallow- to Deep-Water Environments. Sedimentary Geology, 115(1-4): 53-80. https://doi.org/10.1016/s0037-0738(97)00087-0
      Wang, P. X. , Li, Q. Y. , Tian, J. , 2014. Pleistocene Paleoceanography of the South China Sea: Progress over the Past 20 Years. Marine Geology, 352: 381-396. https://doi.org/10.1016/j.margeo.2014.03.003
      Webster, J. M. , Beaman, R. J. , Puga-Bernabéu, Á. , et al. , 2012. Late Pleistocene History of Turbidite Sedimentation in a Submarine Canyon off the Northern Great Barrier Reef, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 331-332: 75-89. https://doi.org/10.1016/j.palaeo.2012.02.034
      Wu, J. P. , Wang, Y. M. , Wang, H. R. , et al. , 2012. The Interaction between Deep-Water Turbidity and Bottom Currents: A Review. Geological Review, 58(6): 1110-1120(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201206013.htm
      Wu, S. G. , Yang, Z. , Wang, D. W. , et al. , 2014. Architecture, Development and Geological Control of the Xisha Carbonate Platforms, Northwestern South China Sea. Marine Geology, 350: 71-83. https://doi.org/10.1016/j.margeo.2013.12.016
      Zhu, M. Z. , Graham, S. , Pang, X. , et al. , 2010. Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic Circulation, Northern South China Sea. Marine and Petroleum Geology, 27(1): 307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
      刘杰, 苏明, 乔少华, 等, 2016. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨. 沉积学报, 34(5): 940-950. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605013.htm
      罗伟东, 周娇, 李学杰, 等, 2018. 南海海盆盆西峡谷的形态与结构及形成演化. 地球科学, 43(6): 2172-2183. doi: 10.3799/dqkx.2017.615
      孙美静, 高红芳, 李学杰, 2018. 台湾东部海域台东峡谷沉积特征及其成因. 地球科学, 43(10): 3709-3718. doi: 10.3799/dqkx.2017.515
      田洁, 吴时国, 王大伟, 等, 2016. 西沙海域碳酸盐台地周缘水道沉积体系. 海洋科学, 40(6): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201606015.htm
      吴嘉鹏, 王英民, 王海荣, 等, 2012. 深水重力流与底流交互作用研究进展. 地质论评, 58(6): 1110-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201206013.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(1)

      Article views (1961) PDF downloads(98) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return