Citation: | Han Qingsen, Peng Songbai, Jiao Shujuan, 2020. Discovery and Tectonic Implications of Paleoproterozoic Cold Subduction Low-Temperature/High-Pressure Eclogitic Metapelites, Yangtze Craton. Earth Science, 45(6): 1986-1998. doi: 10.3799/dqkx.2020.074 |
Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
|
Brown, M., Johnson, T., 2018.Secular Change in Metamorphism and the Onset of Global Plate Tectonics.American Mineralogist, 103(2):181-196. https://doi.org/10.2138/am-2018-6166
|
Cen, Y., Peng, S.B., Kusky, T.M., et al., 2012.Granulite Facies Metamorphic Age and Tectonic Implications of BIFs from the Kongling Group in the Northern Huangling Anticline.Journal of Earth Science, 23(5):648-658. https://doi.org/10.1007/s12583-012-0286-x
|
Chen, K., Gao, S., Wu, Y.B., et al., 2013.2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China.Precambrian Research, 224:472-490. https://doi.org/10.1016/j.precamres.2012.10.017
|
Chopin, C., 1981.Talc-Phengite:A Widespread Assemblage in High-Grade Pelitic Blueschists of the Western Alps.Journal of Petrology, 22(4):628-650. https://doi.org/10.1093/petrology/22.4.628
|
Coleman, R.G., Lee, D.E., Beatty, L.B., et al., 1965.Eclogites and Eclogites:Their Differences and Similarities.Geological Society of America Bulletin, 76(5):483-508. doi: 10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2
|
Connolly, J.A.D., 2005.Computation of Phase Equilibria by Linear Programming:A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation.Earth and Planetary Science Letters, 236(1-2):524-541. https://doi.org/10.1016/j.epsl.2005.04.033
|
Corfu, F., 2003.Atlas of Zircon Textures.Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
|
Cruciani, G., Franceschelli, M., Massonne, H.J., et al., 2013.Pressure-Temperature and Deformational Evolution of High-Pressure Metapelites from Variscan NE Sardinia, Italy.Lithos, (175-176):272-284. https://doi.org/10.1016/j.lithos.2013.05.001
|
François, C., Debaille, V., Paquette, J.L., et al., 2018.The Earliest Evidence for Modern-Style Plate Tectonics Recorded by HP-LT Metamorphism in the Paleoproterozoic of the Democratic Republic of the Congo.Scientific Reports, 8(1):15452. https://doi.org/10.1038/s41598-018-33823-y
|
Gabriele, P., Ballèvre, M., Jaillard, E., et al., 2004.Garnet-Chloritoid-Kyanite Metapelites from the Raspas Complex (SW Ecuador) a Key Eclogite-Facies Assemblage.European Journal of Mineralogy, 15(6):977-989. https://doi.org/10.1127/0935-1221/2003/0015-0977
|
Ganne, J., de Andrade, V., Weinberg, R.F., et al., 2012.Modern-Style Plate Subduction Preserved in the Palaeoproterozoic West African Craton.Nature Geoscience, 5(1):60. https://doi.org/10.1038/ngeo1321
|
Gao, S., Yang, J., Zhou, L., et al., 2011.Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses.American Journal of Science, 311(2):153-182. https://doi.org/10.2475/02.2011.03
|
Gao, S., Zhang, B.R., 1990.The Discovery of Archean TTG Gneisses in the Northern Yangtze Platform and Their Implications.Earth Science, 15(6):675-679(in Chinese with English abstract) http://www.researchgate.net/publication/284789764_The_discovery_of_Archean_TTG_gneisses_in_northern_Yangtze_craton_and_their_implications
|
Guillot, S., de Sigoyer, J., Lardeaux, J.M., et al., 1997.Eclogitic Metasediments from the Tso Morari Area (Ladakh, Himalaya):Evidence for Continental Subduction during India-Asia Convergence.Contributions to Mineralogy and Petrology, 128(2-3):197-212. https://doi.org/10.1007/s004100050303
|
Guo, J.L., Gao, S., Wu, Y.B., et al., 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China:Implications for Early Archean Crustal Growth.Precambrian Research, 242:82-95. https://doi.org/10.1016/j.precamres.2013.12.018
|
Guo, J.W, Zheng, J.P., Ping, X.Q., et al., 2018.Paleoproterozoic Porphyries and Coarse-Grained Granites Manifesting a Vertical Hierarchical Structure of Archean Continental Crust beneath the Yangtze Craton Precambrian Research 318: 288-305.https://doi.org/10.1016/j.precamres.2018.06.012
|
Han, Q.S., Peng, S.B., 2020.Paleoproterozoic Subduction within the Yangtze Craton:Constraints from Nb-Enriched Mafic Dikes in the Kongling Complex.Precambrian Research, 340:105634. https://doi.org/10.1016/j.precamres.2020.105634
|
Han, Q.S., Peng, S.B., Kusky, T.M., et al., 2017.A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation.Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004
|
Han, Q.S., Peng, S.B., Kusky, T.M., et al., 2019.Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex:Evidence for a Collisional Orogenic Event in the Yangtze Craton.Lithos, 342-343:513-529. https://doi.org/10.1016/j.lithos.2019.05.015
|
Han, Q.S., Peng, S.B., Polat, A., et al., 2018.A ca.2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China:Evidence from High-Mg Basalts and Andesites.Precambrian Research, 309:309-324. https://doi.org/10.1016/j.precamres.2017.05.015
|
Holder, R.M., Viete, D.R., Brown, M., et al., 2019.Metamorphism and the Evolution of Plate Tectonics.Nature, 572:378-381. https://doi.org/10.1038/s41586-019-1462-2
|
Holland, T.J.B., 1979.Experimental Determination of the Reaction Paragonite=Jadeite+Kyanite+H2O, and Internally Consistent Thermodynamic Data for Part of the System Na2O-Al2O3-SiO2-H2O, with Applications to Eclogites and Blueschists.Contributions to Mineralogy and Petrology, 68(3):293-301. https://doi.org/10.1007/bf00371551
|
Holland, T.J.B., Powell, R., 2004.An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest.Journal of Metamorphic Geology, 16(3):309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
|
Hoschek, G., 2013.Garnet Zonation in Metapelitic Schists from the Eclogite Zone, Tauern Window, Austria:Comparison of Observed and Calculated Profiles.European Journal of Mineralogy, 25(4):615-629. https://doi.org/10.1127/0935-1221/2013/0025-2310
|
Hoschek, G., Konzett, J., Tessadri, R., 2010.Phase Equilibria in Quartzitic Garnet-Kyanite-Chloritoid Micaschist from the Eclogite Zone, Tauern Window, Eastern Alps.European Journal of Mineralogy, 22(5):721-732. https://doi.org/10.1127/0935-1221/2010/0022-2049
|
Konopásek, J., 2001.Eclogitic Micaschists in the Central Part of the Krušné Hory Mountains (Bohemian Massif).European Journal of Mineralogy, 13(1):87-100. https://doi.org/10.1127/0935-1221/01/0013-0087
|
Koons, P.O., Thompson, A.B., 1985.Non-Mafic Rocks in the Greenschist, Blueschist and Eclogite Facies.Chemical Geology, 50(1-3):3-30. https://doi.org/10.1016/0009-2541(85)90109-3
|
Le Bayon, B., Pitra, P., Ballevre, M., et al., 2006.Reconstructing P-T Paths during Continental Collision Using Multi-Stage Garnet (Gran Paradiso Nappe, Western Alps).Journal of Metamorphic Geology, 24(6):477-496. https://doi.org/10.1111/j.1525-1314.2006.00649.x
|
Li, H.Q., Zhou, W.X., Wei, Y.X., et al., 2020.Two Extensional Events in the Early Evolution of the Yangtze Block, South China:Geochemical and Isotopic Evidence from Two Sets of Paleoproterozoic Alkali Porphyry in the Northern Kongling Terrane.Geological Journal. https://doi.org/10.1002/gj.3802
|
Li, X.L., Zhang, L.F., Wei, C.J., et al., 2017.Neoarchean-Paleoproterozoic Granulite-Facies Metamorphism in Uzkaya Salma Eclogite-Bearing Mélange, Belomorian Province (Russia).Precambrian Research, 294:257-283. https://doi.org/10.1016/j.precamres.2017.03.031
|
Li, Y.H., Zheng, J.P., Xiong, Q., et al., 2016.Petrogenesis and Tectonic Implications of Paleoproterozoic Metapelitic Rocks in the Archean Kongling Complex from the Northern Yangtze Craton, South China.Precambrian Research, 276:158-177. https://doi.org/10.1016/j.precamres.2016.01.028
|
Ling, W.L., Gao, S., Zhang, B.R., et al., 2001.The Recognizing of ca.1.95 Ga Tectono-Thermal Event in Kongling Nucleus and Its Significance for the Evolution of Yangtze Block, South China.Chinese Science Bulletin, 46(4):326-329. https://doi.org/10.1007/bf03187196
|
Liu, B., Zhai, M.G., Zhao, L., et al., 2019.Metamorphism, P-T Path and Zircon U-Pb Dating of Paleoproterozoic Mafic and Felsic Granulites from the Kongling Terrane, South China.Precambrian Research, 333:105403. https://doi.org/10.1016/j.precamres.2019.105403
|
Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
|
Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
López-Carmona, A., Pitra, P., Abati, J., 2013.Blueschist-Facies Metapelites from the Malpica-Tui Unit (NW Iberian Massif):Phase Equilibria Modelling and H2O and Fe2O3 Influence in High-Pressure Assemblages.Journal of Metamorphic Geology, 31(3):263-280. https://doi.org/10.1111/jmg.12018
|
Ludwig, K.R., 2003.User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication, 70.
|
Maldonado, R., Ortega-Gutiérrez, F., Hernández-Uribe, D., 2016.Garnet-Chloritoid-Paragonite Metapelite from the Chuacús Complex (Central Guatemala):New Evidence for Continental Subduction in the North America-Caribbean Plate Boundary.European Journal of Mineralogy, 28(6):1169-1186. https://doi.org/10.1127/ejm/2016/0028-2578
|
Maldonado, R., Weber, B., Ortega-Gutiérrez, F., et al., 2018.High-Pressure Metamorphic Evolution of Eclogite and Associated Metapelite from the Chuacús Complex (Guatemala Suture Zone):Constraints from Phase Equilibria Modelling Coupled with Lu-Hf and U-Pb Geochronology.Journal of Metamorphic Geology, 36(1):95-124. https://doi.org/10.1111/jmg.12285
|
Mints, M.V., Belousova, E.A., Konilov, A.N., et al., 2010.Mesoarchean Subduction Processes:2.87 Ga Eclogites from the Kola Peninsula, Russia.Geology, 38(8):739-742. https://doi.org/10.1130/G31219.1
|
Miyashiro, A., 1961.Evolution of Metamorphic Belts.Journal of Petrology, 2(3):277-311. https://doi.org/10.1093/petrology/2.3.277
|
Moyen, J.F., Stevens, G., Kisters, A., 2006.Record of Mid-Archaean Subduction from Metamorphism in the Barberton Terrain, South Africa.Nature, 442(7102):559-562. https://doi.org/10.1038/nature04972
|
Negulescu, E., Săbău, G., Massonne, H.J., 2009.Chloritoid-Bearing Mineral Assemblages in High-Pressure Metapelites from the Bughea Complex, Leaota Massif (South Carpathians).Journal of Petrology, 50(1):103-125. https://doi.org/10.1093/petrology/egn075
|
Negulescu, E., Săbău, G., Massonne, H.J., 2018.Growth of Chloritoid and Garnet along a Nearly Isothermal Burial Path to 70 km Depth:An Example from the Bughea Metamorphic Complex, Leaota Massif, South Carpathians.Mineralogy and Petrology, 112(4):535-553. https://doi.org/10.1007/s00710-017-0552-9
|
Okay, A.I., 2002.Jadeite-Chloritoid-Glaucophane-Lawsonite Blueschists in North-West Turkey:Unusually High P/T Ratios in Continental Crust.Journal of Metamorphic Geology, 20(8):757-768. https://doi.org/10.1046/j.1525-1314.2002.00402.x
|
Peng, M., Wu, Y.B., Gao, S., et al., 2012.Geochemistry, Zircon U-Pb Age and Hf Isotope Compositions of Paleoproterozoic Aluminous A-Type Granites from the Kongling Terrain, Yangtze Block:Constraints on Petrogenesis and Geologic Implications.Gondwana Research, 22(1):140-151. https://doi.org/10.1016/j.gr.2011.08.012
|
Peng, M., Wu, Y.B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication.Chinese Sci.Bull., 54:1098-1104.
|
Qiu, X.F., Jiang, T., Zhao, X.M., et al., 2020.Baddeleyite U-Pb Geochronology and Geochemistry of Late Paleoproterozoic Mafic Dykes from the Kongling Complex of the Northern Yangtze Block, South China.Precambrian Research, 337:105537. https://doi.org/10.1016/j.precamres.2019.105537
|
Qiu, X.F., Zhao, X.M., Yang, H.M., et al., 2018.Geochemical and Nd Isotopic Compositions of the Palaeoproterozoic Metasedimentary Rocks in the Kongling Complex, Nucleus of Yangtze Craton, South China Block:Implications for Provenance and Tectonic Evolution.Geological Magazine, 155(6):1263-1276. https://doi.org/10.1017/S0016756817000048
|
Qiu, Y.M., Gao, S., McNaughton, N.J., et al., 2000.First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics.Geology, 28(1):11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2
|
Shi, Y.H., Wang, J., Nie, F., et al., 2016.Investigation of P-T Conditions and Geochoronology for Garnet-Kyanite-Chloritoid Schist from the Susong Complex.Acta Petrologica Sinica, 32(2):493-504(in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602015
|
Smye, A.J., Greenwood, L.V., Holland, T.J.B., 2010.Garnet-Chloritoid-Kyanite Assemblages:Eclogite Facies Indicators of Subduction Constraints in Orogenic Belts.Journal of Metamorphic Geology, 28(7):753-768. https://doi.org/10.1111/j.1525-1314.2010.00889.x
|
Stöckhert, B., Massonne, H.J., Nowlan, E.U., 1997.Low Differential Stress during High-Pressure Metamorphism:The Microstructural Record of a Metapelite from the Eclogite Zone, Tauern Window, Eastern Alps.Lithos, 41(1-3):103-118. https://doi.org/10.1016/S0024-4937(97)82007-5
|
Wan, B., Windley, B.F., Xiao, W.J., et al., 2015.Paleoproterozoic High-Pressure Metamorphism in the Northern North China Craton and Implications for the Nuna Supercontinent.Nature Communications, 6:8344. https://doi.org/10.1038/ncomms9344
|
Wang, Z.J., Wang, J., Deng, Q., et al., 2015.Paleoproterozoic I-Type Granites and Their Implications for the Yangtze Block Position in the Columbia Supercontinent:Evidence from the Lengshui Complex, South China.Precambrian Research, 263:157-173. https://doi.org/10.1016/j.precamres.2015.03.014
|
Wei, C.J., Powell, R., 2006.Calculated Phase Relations in the System NCKFMASH (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) for High-Pressure Metapelites.Journal of Petrology, 47(2):385-408. https://doi.org/10.1093/petrology/egi079
|
Weller, O.M., St-Onge, M.R., 2017.Record of Modern-Style Plate Tectonics in the Palaeoproterozoic Trans-Hudson Orogen.Nature Geoscience, 10(4):305. https://doi.org/10.1038/ngeo2904
|
Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
|
Wu, Y.B., Gao, S., Gong, H.J., et al., 2009.Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton:Refining the Timing of Palaeoproterozoic High-Grade Metamorphism.Journal of Metamorphic Geology, 27(6):461-477. https://doi.org/10.1111/j.1525-1314.2009.00826.x
|
Wu, Y.B., Gao, S., Zhang, H.F., et al., 2012.Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications.Precambrian Research, 200:26-37. https://doi.org/10.1016/j.precamres.2011.12.015
|
Xu, C., Kynický, J., Song, W.L., et al., 2018.Cold Deep Subduction Recorded by Remnants of a Paleoproterozoic Carbonated Slab.Nature Communications, 9(1):2790. https://doi.org/10.1038/s41467-018-05140-5
|
Yin, C.Q., Lin, S.F., Davis, D.W., et al., 2013.2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China:Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia.Lithos, 182-183:200-210. https://doi.org/10.1016/j.lithos.2013.10.012
|
Yu, H.L., Zhang, L.F, Zhang, L.J., et al., 2019.The Metamorphic Evolution of Salma-Type Eclogite in Russia:Constraints from Zircon/Titanite Dating and Phase Equilibria Modeling.Precambrian Research, 326:363-384. https://doi.org/10.1016/j.precamres.2018.01.019
|
Zhang, J.X., Meng, F.C., Yang, J.S., 2003.Eclogitic Metapelites in the Western Segment of the North Qaidam Basin and Their Geological Implications.Geological Bulletin of China, 22(9):655-657 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200309003
|
Zhang, J.X., Meng, F.C., Yang, J.S., 2004.Eclogitic Metapelites in the Western Segment of the North Qaidam Mountains:Evidence on "In Situ" Relationship between Eclogite and Its Country Rock.Science China:Earth Sciences, 47(12), 1102-1112. https://doi.org/10.1360/02yd0311
|
Zhang, S.B., Zheng, Y.F., 2013.Formation and Evolution of Precambrian Continental Lithosphere in South China.Gondwana Research, 23(4):1241-1260. https://doi.org/10.1016/j.gr.2012.09.005
|
Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006a.Zircon Isotope Evidence for ≥ 3.5 Ga Continental Crust in the Yangtze Craton of China.Precambrian Research, 146(1-2):16-34. https://doi.org/10.1016/j.precamres.2006.01.002
|
Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006b.Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China.Precambrian Research, 151(3-4):265-288. https://doi.org/10.1016/j.precamres.2006.08.009
|
Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2002.Review of Global 2.1-1.8 Ga Orogens:Implications for a Pre-Rodinia Supercontinent.Earth-Science Reviews, 59(1-4):125-162. https://doi.org/10.1016/s0012-8252(02)00073-9
|
Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006.Widespread Archean Basement beneath the Yangtze Craton.Geology, 34(6):417-420. https://doi.org/10.1130/g22282.1
|
Zheng, Y.F., Zhang, L.F., Liu, L., et al., 2013.Progress in the Study of Continental Deep Subduction and Ultrahigh Pressure Metamorphism.Bulletin of Mineralogy, Petrology and Geochemistry, 32(2):135-158(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201302001
|
Zucali, M., Spalla, M.I., Gosso, G., 2002.Strain Partitioning and Fabric Evolution as a Correlation Tool:The Example of the Eclogitic Micaschists Complex in the Sesia-Lanzo Zone (Monte Mucrone-Monte Mars, Western Alps, Italy).Schweizerische Mineralogische Und Petrographische Mitteilungen, 82(3):429-454.
|
高山, 张本仁, 1990.扬子地台北部太古宙TTG片麻岩的发现及其意义.地球科学, 15(6):675-679. http://www.cnki.com.cn/Article/CJFDTotal-DQKX199006012.htm
|
石永红, 王娟, 聂峰, 等, 2016.宿松变质杂岩中石榴石-蓝晶石-硬绿泥石片岩形成条件及时限研究.岩石学报, 32(2):493-504. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602015
|
张建新, 孟繁聪, 杨经绥, 2003.柴达木盆地北缘西段榴辉岩相变质泥质岩的确定及意义.地质通报, 22(9):655-657. doi: 10.3969/j.issn.1671-2552.2003.09.003
|
郑永飞, 张立飞, 刘良, 等, 2013.大陆深俯冲与超高压变质研究进展.矿物岩石地球化学通报, 32(2):135-158. doi: 10.3969/j.issn.1007-2802.2013.02.001
|
![]() |
![]() |