• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Shao Yanxiu, Zou Xiaobo, Yuan Daoyang, Yao Yunsheng, Liu Xingwang, 2021. Late Quaternary Slip along Yangguan Fault at Northeastern Section of Altyn Tagh Fault and Implications for Seismic Risk. Earth Science, 46(2): 683-696. doi: 10.3799/dqkx.2020.082
    Citation: Shao Yanxiu, Zou Xiaobo, Yuan Daoyang, Yao Yunsheng, Liu Xingwang, 2021. Late Quaternary Slip along Yangguan Fault at Northeastern Section of Altyn Tagh Fault and Implications for Seismic Risk. Earth Science, 46(2): 683-696. doi: 10.3799/dqkx.2020.082

    Late Quaternary Slip along Yangguan Fault at Northeastern Section of Altyn Tagh Fault and Implications for Seismic Risk

    doi: 10.3799/dqkx.2020.082
    • Received Date: 2020-03-18
    • Publish Date: 2021-02-15
    • The Yangguan Fault is located on northwestern section of the Altyn Tagh Fault, which is a large strike slip fault and seismotectonic in Northeast Tibet Plateau, which poses potential seismic hazard to city development and culture relics in Dunhuang area. In this study it focuses on characterizing activity of the Yangguan Fault, using high resolution satellite imagery to map faults in space. At two study sites, it made detailed investigation by methods of difference GPS, aerial photogrammetry with unmanned aerial vehicle, paleoseismical trench and Optically Stimulated Luminescence dating. The preliminary results are that the Yangguan Fault is a thrust fault trending NEE with high dipping angle; its latest event likely occurred between 43.5 ka and 12.1 ka. The results imply that the eastern section of the Yangguan Fault ruptured at least during Late Pleistocene. It is proposed that the eastern section rupture will cause an earthquake of Mw 6.6, shaking the nearby area strongly, and the seismic intensity in the Dunhuang downtown will be more than Ⅵ, reaching up to Ⅸ at Yangguan relic site. Therefore, the Yangguan Fault is an important seismic fault in West Hexi Corridor. This study provides critical data for seismic prevention and disaster mitigation for city development and culture relic protection in Dunhuang area.

       

    • 致谢: 感谢“国家高分辨率对地观测系统甘肃数据与应用中心”为本文提供影像数据.感谢两位审稿专家为本文提出了宝贵的修改意见.
    • Aitken, M. J. , 1998. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence. Oxford University Press, London.
      Bemis, S. P. , Micklethwaite, S. , Turner, D. , et al. , 2014. Ground-Based and UAV-Based Photogrammetry: A Multi-Scale, High-Resolution Mapping Tool for Structural Geology and Paleoseismology. Journal of Structural Geology, 69: 163-178. https://doi.org/10.1016/j.jsg.2014.10.007
      Cunningham, D. , Zhang, J. , Li, Y. F. , 2016. Late Cenozoic Transpressional Mountain Building Directly North of the Altyn Tagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China. Tectonophysics, 687: 111-128. https://doi.org/10.1016/j.tecto.2016.09.010
      Cowgill, E. , Yin, A. , Arrowsmith, J. R. , et al. , 2004. The AkatoTagh Bend along the Altyn Tagh Fault, Northwest Tibet 1: Smoothing by Vertical-Axis Rotation and the Effect of Topographic Stresses on Bend-Flanking Faults. Geological Society of America Bulletin, 116(11-12): 1423-1442. https://doi.org/10.1130/b25359.1
      Cowgill, E. , Yin, A. , Feng, W. X. , et al. , 2000. Is the North Altyn Fault Part of a Strike-Slip Duplex along the Altyn Tagh Fault System? Geology, 28(3): 255-258. https://doi.org/10.1130/0091-7613(2000)28255:itnafp>2.0.co;2 doi: 10.1130/0091-7613(2000)28255:itnafp>2.0.co;2
      Deng, Q. D. , Chen, L. C. , Ran, Y. K. , 2004. Quantitative Studies and Applications of Active Tectonics. Earth Science Frontiers, 11(4): 383-392(in Chinese with English abstract). http://www.researchgate.net/publication/304335743_Quantitative_studies_and_applications_of_active_tectonics
      Galbraith, R. F. , Roberts, R. G. , 2012. Statistical Aspects of Equivalent Dose and Error Calculation and Display in OSL Dating: An Overview and Some Recommendations. Quaternary Geochronology, 11: 1-27. https://doi.org/10.1016/j.quageo.2012.04.020
      Hetzel, R. , Hampel, A. , Gebbeken, P. , et al. , 2019. A Constant Slip Rate for the Western Qilian Shan Frontal Thrust during the Last 200 ka Consistent with GPS-Derived and Geological Shortening Rates. Earth and Planetary Science Letters, 509: 100-113. https://doi.org/10.1016/j.epsl.2018.12.032
      Li, H. B. , Pan, J. W. , Lin, A. M. , et al. , 2016. Coseismic Surface Ruptures Associated with the 2014 Mw 6.9 Yutian Earthquake on the Altyn Tagh Fault, Tibetan Plateau. Bulletin of the Seismological Society of America, 106(2): 595-608. https://doi.org/10.1785/0120150136
      Liu, X. W. , Yuan, D. Y. , Su, Q. , 2019. Late Pleistocene Slip Rate on a Blind Thrust in the Western Qilian Shan, NW China. Geomorphology, 345: 106841. https://doi.org/10.1016/j.geomorph.2019.106841
      Liu, X. W. , Yuan, D. Y. , Su, Q. , et al. , 2020. Late Quaternary Tectonic Activity and Slip Rates of Active Faults in the Western Hexi Corridor, NW China. Journal of Earth Science, 31(5): 968-977. https://doi.org/10.1007/s12583-020-1287-9
      Liu, X. W. , Yuan, D. Y. , Zou, X. B. , et al. , 2018. Active Characteristics of the Sanweishan Fault in the Northern Margin of the Tibetan Plateau during Late Pleistocene. Seismology and Geology, 40(1): 121-132(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_seismology-geology_thesis/0201253220867.html
      Meyer, B. , Tapponnier, P. , Gaudemer, Y. , et al. , 1996. Rate of Left-Lateral Movement along the Easternmost Segment of the Altyn Tagh Fault, East of 96°E (China). Geophysical Journal International, 124(1): 29-44. https://doi.org/10.1111/j.1365-246x.1996.tb06350.x
      Molnar, P. , Tapponnier, P. , 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419
      Ran, Y. K. , Chen, L. C. , Chen, W. S. , et al. , 2012. Key Techniques and Several Cases Analysis in Paleoseismic Studies in Mainland China(2): Surface Deformation Characteristics of Wenchuan Earthquake and Paleoseismic Indicators on Fold-Reverse Fault. Seismology and Geology, 34(3): 385-400(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201404001.htm
      Ran, Y. K. , Chen, L. C. , Shen, J. , et al. , 2007. Xishan Fault Group near Urumqi City and Paleoearthquake Identification on Reverse Fault. Seismology and Geology, 29(2): 218-235(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_seismology-geology_thesis/0201253224705.html
      Shao, Y. X. , Yuan, D. Y. , Oskin, M. E. , et al. , 2017. Historical (Yuan Dynasty) Earthquake on the North Danghe Nanshan Thrust, Western Qilian Shan, China. Bulletin of the Seismological Society of America, 107(3): 1175-1184. https://doi.org/10.1785/0120160289
      Tapponnier, P. , Molnar, P. , 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research, 82(20): 2905-2930. https://doi.org/10.1029/jb082i020p02905
      Tapponnier, P. , Xu, Z, Q. , Roger, F. , et al. , 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
      van der Woerd, J. , Xu, X. W. , Li, H. B. , et al. , 2001. Rapid Active Thrusting along the Northwestern Range Front of the Tanghe Nan Shan (Western Gansu, China). Journal of Geophysical Research: Solid Earth, 106(B12): 30475-30504. https://doi.org/10.1029/2001JB000583
      Wang, P. T. , Shao, Y. X. , Zhang, H. P. , et al. , 2016. The Application of sUAV Photogrammetry in Active Tections: Shanmagou Site of Haiyuan Fault, for Example. Quaternary Sciences, 36(2): 433-442(in Chinese with English abstract). http://www.dsjyj.com.cn/EN/Y2016/V36/I2/433
      Wells, D. L. , Coppersmith, K. J. , 1994. Updated Empirical Relationships between Magnitude, Rupture Length, Rupture Area and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 972-1002. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/4/974
      Wintle, A. G. , 2008. Luminescence Dating: Where It has been and Where It is Going. Boreas, 37(4): 471-482. https://doi.org/10.1111/j.1502-3885.2008.00059.x
      Wu, Y. , Chen, Z. L. , Chen, B. L. , et al. , 2019. Early Paleozoic Tectonic Deformation in Qiashenkansayigou Area, North Altun, and Implication for Tectonic Evolution. Journal of Geomechanics, 25(3): 301-312(in Chinese with English abstract).
      Wu, Z. H. , 2019. The Definition and Classification of Active Faults: History, Current Status and Progress. Acta Geoscientica Sinica, 40(5): 661-697(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geoscientica-sinica_thesis/0201273307896.html
      Wu, Z. H. , Hu, M. M. , 2019. Neotectonics, Active Tectonics and Earthquake Geology: Terminology, Applications and Advances. Journal of Geodynamics, 127: 1-15. https://doi.org/10.1016/j.jog.2019.01.007
      Xiao, Q. B. , Shao, G. H. , Jing, L. Z. , et al. , 2015. Eastern Termination of the Altyn Tagh Fault, Western China: Constraints from a Magnetotelluric Survey. Journal of Geophysical Research: Solid Earth, 120(5): 2838-2858. https://doi.org/10.1002/2014jb011363
      Xu, X. W. , Tan, X. B. , Yu, G. H. , et al. , 2013. Normal- and Oblique-Slip of the 2008 Yutian Earthquake: Evidence for Eastward Block Motion, Northern Tibetan Plateau. Tectonophysics, 584: 152-165. https://doi.org/10.1016/j.tecto.2012.08.007
      Xu, X. W. , Yu, G. H. , Ran, Y. K. , et al. , 2015. Introduction on Urban Active Faults in China: Surveying Outcomes from 20 Chinese Mega-Cities. Seismological Press, Beijing (in Chinese).
      Yang, H. B. , Yang, X. P. , Cunningham, D. , et al. , 2020. A Regionally Evolving Transpressional Duplex along the Northern Margin of the Altyn Tagh Fault: New Kinematic and Timing Constraints from the Sanweishan and Nanjieshan, China. Tectonics, 39(2): e2019tc005749. https://doi.org/10.1029/2019TC005749
      Yuan, D. Y. , Shi, Y. C. , Wang, X. D. , 2000. The Features of New Activity and Influence to Grottoes in Dunhuang Mogao Grott Oes Region. Dunhuang Research, (1): 56-64(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHYJ200001011.htm
      Yun, L. , Yang, X. P. , Song, F. M. , et al. , 2016a. Late Quaternary Sinistral Strike-Slip Activities of Sanwei Shan Fault in the North of Tibetan Plateau. Seismology and Geology, 38(2): 434-446(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201602016.htm
      Yun, L. , Yang, X. P. , Wang, J. , et al. , 2016b. Paleo-Earthquake Events along Northeastern Segment of the Sanweishan Mountain Fault, Northern Tibetan Plateau. Technology for Earthquake Disaster Prevention, 11(2): 186-198(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZFY201602002.htm
      Yun, L. , Zhang, J. , Wang, J. , et al. , 2020. Active Deformation to the North of the Altyn Tagh Fault: Constraints on the Northward Growth of the Northern Tibetan Plateau. Journal of Asian Earth Sciences, 198: 104312. https://doi.org/10.1016/j.jseaes.2020.104312
      Yun, L. , Zhang, J. , Xiao, Q. B. , et al. , 2019. Thrust Movement and Deep Structural Characteristic of the Sanweishan Fault in the Northern Margin of the Tibetan Plateau since the Late Quaternary. Acta Geologica Sinica, 93(9): 2107-2122(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201909001.htm
      Zhang, P. Z. , Molnar, P. , Xu, X. W. , 2007. Late Quaternary and Present-Day Rates of Slip along the Altyn Tagh Fault, Northern Margin of the Tibetan Plateau. Tectonics, 26(5): TC5010. https://doi.org/10.1029/2006tc002014
      Zhang, Y. M. , Liu, T. Z. , 1989. The Sanweishan Fault: A Quaternary Active Fault without Large Earthquakes. Earthquake Research in China, 5(3): 37-48(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD198903004.htm
      Zhou, Z. H. , He, S. L. , Chen, W. K. , et al. , 2011. Parameters in Seismic Intensity Affecting Field Model of Gansu Area. Technology for Earthquake Disaster Prevention, 6(2): 180-189(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZFY201102012.htm
      邓起东, 陈立春, 冉勇康, 2004. 活动构造定量研究与应用. 地学前缘, 11(4): 383-392. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404006.htm
      刘兴旺, 袁道阳, 邹小波, 等, 2018. 青藏高原北缘三危山断裂晚更新世活动特征. 地震地质, 40(1): 121-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201801010.htm
      冉勇康, 陈立春, 陈文山, 等, 2012. 中国大陆古地震研究的关键技术与案例解析(2): 汶川地震地表变形特征与褶皱逆断层古地震识别. 地震地质, 34(3): 385-400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201203003.htm
      冉勇康, 陈立春, 沈军, 等, 2007. 乌鲁木齐西山断裂组与地表破裂型逆断层古地震识别标志. 地震地质, 29(2): 218-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200702002.htm
      王朋涛, 邵延秀, 张会平, 等, 2016. sUAV摄影技术在活动构造研究中的应用: 以海原断裂骟马沟为例. 第四纪研究, 36(2): 433-442. http://d.wanfangdata.com.cn/Periodical/dsjyj201602018
      吴玉, 陈正乐, 陈柏林, 等, 2019. 北阿尔金恰什坎萨依沟地区早古生代构造变形特征及构造演化启示. 地质力学学报, 25(3): 301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201903016.htm
      吴中海, 2019. 活断层的定义与分类: 历史、现状和进展. 地球学报, 40(5): 661-697. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201905003.htm
      徐锡伟, 于贵华, 冉勇康, 等, 2015. 中国城市活动断层概论: 20个城市活动断层探测成果. 北京: 地震出版社.
      袁道阳, 石玉成, 王旭东, 2000. 敦煌莫高窟地区断裂新活动特征及其对石窟的影响. 敦煌研究, (1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DHYJ200001011.htm
      云龙, 杨晓平, 宋方敏, 等, 2016a. 青藏高原北缘三危山断裂晚第四纪以来的左旋走滑活动. 地震地质, 38(2): 434-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201602016.htm
      云龙, 杨晓平, 王驹, 等, 2016b. 青藏高原北缘三危山断裂东北段的古地震事件. 震灾防御技术, 11(2): 186-198. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201602002.htm
      云龙, 张进, 肖骑斌, 等, 2019. 青藏高原北缘三危山断裂晚第四纪以来的逆冲运动及其深部构造特征. 地质学报, 93(9): 2107-2122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201909001.htm
      张裕明, 柳覃卓, 1989. 敦煌三危山断层: 一条无强震的第四纪活动断层. 中国地震, 5(3): 37-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD198903004.htm
      周中红, 何少林, 陈文凯, 等, 2011. 甘肃地区地震烈度影响场计算模型参数的改进研究与应用. 震灾防御技术, 6(2): 180-189. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201102012.htm
    • Relative Articles

    • Cited by

      Periodical cited type(4)

      1. 袁凯,李行,刘瑞峰,张连蓬,张启华,曹兆峰,王云凯. 基于高分二号遥感影像的露天灰岩矿区裸岩提取方法. 地球科学. 2024(04): 1541-1554 . 本站查看
      2. 肖阳,单斌,刘成利,周万里. 2022年芦山M_S6.1地震应力触发及地震危险性分析. 地球科学. 2024(08): 2979-2991 . 本站查看
      3. 兰恒星,吕洪涛,包含,李黎,陈卫昌,郭进京,刘世杰. 石窟寺岩体劣化机制与失稳机理研究进展. 地球科学. 2023(04): 1603-1633 . 本站查看
      4. 姚赟胜,邵延秀,邹小波,刘兴旺,张波,朱俊文,蔡艺萌. 阳关断裂带变形样式及其对阿尔金断裂扩展的指示意义. 地震工程学报. 2023(06): 1467-1477 .

      Other cited types(1)

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06010203040
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.1 %FULLTEXT: 33.1 %META: 63.0 %META: 63.0 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.8 %其他: 3.8 %其他: 0.2 %其他: 0.2 %Bandar Būshehr: 0.2 %Bandar Būshehr: 0.2 %China: 1.4 %China: 1.4 %Hong Kong, China: 0.2 %Hong Kong, China: 0.2 %India: 0.0 %India: 0.0 %United States: 0.7 %United States: 0.7 %[]: 0.1 %[]: 0.1 %上海: 1.3 %上海: 1.3 %东莞: 0.5 %东莞: 0.5 %中卫: 0.1 %中卫: 0.1 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %克孜勒苏: 0.1 %克孜勒苏: 0.1 %兰州: 1.6 %兰州: 1.6 %北京: 20.5 %北京: 20.5 %十堰: 0.0 %十堰: 0.0 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.2 %南京: 0.2 %南昌: 0.1 %南昌: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.3 %呼和浩特: 0.3 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.2 %嘉兴: 0.2 %嘉峪关: 0.1 %嘉峪关: 0.1 %大同: 0.0 %大同: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %宣城: 0.0 %宣城: 0.0 %宿迁: 0.1 %宿迁: 0.1 %山南地区: 0.0 %山南地区: 0.0 %广州: 0.2 %广州: 0.2 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %廊坊: 0.1 %廊坊: 0.1 %张家口: 0.5 %张家口: 0.5 %张掖: 0.1 %张掖: 0.1 %徐州: 0.1 %徐州: 0.1 %成都: 1.4 %成都: 1.4 %扬州: 0.1 %扬州: 0.1 %承德: 0.1 %承德: 0.1 %日喀则: 0.1 %日喀则: 0.1 %昆明: 0.4 %昆明: 0.4 %昆明市呈贡区: 0.0 %昆明市呈贡区: 0.0 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.1 %杭州: 1.1 %桂林: 0.0 %桂林: 0.0 %武汉: 0.9 %武汉: 0.9 %江门: 0.1 %江门: 0.1 %洛杉矶: 0.2 %洛杉矶: 0.2 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.3 %济南: 0.3 %海西蒙古族藏族自治州: 0.1 %海西蒙古族藏族自治州: 0.1 %淄博: 0.0 %淄博: 0.0 %温州: 0.0 %温州: 0.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.5 %漯河: 0.5 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.0 %福州: 0.0 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 11.4 %芒廷维尤: 11.4 %芝加哥: 0.5 %芝加哥: 0.5 %莫斯科: 0.8 %莫斯科: 0.8 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.2 %衢州: 0.2 %西宁: 41.5 %西宁: 41.5 %西安: 0.4 %西安: 0.4 %诺沃克: 0.2 %诺沃克: 0.2 %费利蒙: 0.1 %费利蒙: 0.1 %达尔斯: 0.1 %达尔斯: 0.1 %运城: 1.0 %运城: 1.0 %郑州: 0.4 %郑州: 0.4 %酒泉: 1.3 %酒泉: 1.3 %重庆: 0.2 %重庆: 0.2 %金华: 0.1 %金华: 0.1 %铁岭: 0.2 %铁岭: 0.2 %长春: 0.2 %长春: 0.2 %长沙: 0.2 %长沙: 0.2 %长治: 0.1 %长治: 0.1 %阳江: 0.3 %阳江: 0.3 %青岛: 0.0 %青岛: 0.0 %香港: 0.1 %香港: 0.1 %其他其他Bandar BūshehrChinaHong Kong, ChinaIndiaUnited States[]上海东莞中卫临汾乌鲁木齐克孜勒苏兰州北京十堰华盛顿州南京南昌台北台州合肥呼和浩特哥伦布嘉兴嘉峪关大同大连天津宣城宿迁山南地区广州库比蒂诺廊坊张家口张掖徐州成都扬州承德日喀则昆明昆明市呈贡区朝阳杭州桂林武汉江门洛杉矶洛阳济南海西蒙古族藏族自治州淄博温州湖州湘潭滨州漯河珠海石家庄福州美国伊利诺斯芝加哥芒廷维尤芝加哥莫斯科衡阳衢州西宁西安诺沃克费利蒙达尔斯运城郑州酒泉重庆金华铁岭长春长沙长治阳江青岛香港

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(1)

      Article views (1466) PDF downloads(94) Cited by(5)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return