• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 2
    Feb.  2021
    Turn off MathJax
    Article Contents
    Guo Naxin, Liu Shanbao, Zhao Zheng, 2021. Geochronology, Geochemistry and Geological Implications of Diabase Porphyrite in Tiemuli W-Fe Deposit, Chongyi County, Jiangxi Province. Earth Science, 46(2): 460-473. doi: 10.3799/dqkx.2020.087
    Citation: Guo Naxin, Liu Shanbao, Zhao Zheng, 2021. Geochronology, Geochemistry and Geological Implications of Diabase Porphyrite in Tiemuli W-Fe Deposit, Chongyi County, Jiangxi Province. Earth Science, 46(2): 460-473. doi: 10.3799/dqkx.2020.087

    Geochronology, Geochemistry and Geological Implications of Diabase Porphyrite in Tiemuli W-Fe Deposit, Chongyi County, Jiangxi Province

    doi: 10.3799/dqkx.2020.087
    • Received Date: 2019-09-17
    • Publish Date: 2021-02-15
    • The Mesozoic basic igneous rock in South China is dominated by tholeiite series, while the alkali series is rare. Bimodal intrusive pluton composed of alkali diabase porphyrite and A-type granite occurs in Tiemuli area, Chongyi County, Jiangxi Province. Mineralogical, geochronological and geochemical analyses of the diabase porphyrite were carried out. The Tiemuli diabase porphyrite displays porphyritic texture.Phenocrysts are dominated by salite, with minor diopside and augite, while groundmass minerals comprise andesite (with Ab values of 39.11%-43.30%), kaersutite and clinopyroxene chemically equivalent to phenocrysts. The diabase porphyrite was emplaced after the granite (136.6 Ma) and belongs to alkali basalt series, characterized by low SiO2 (41.73%-46.68%) and TiO2 (1.72%-1.94%) contents, high TFeO (7.64%-9.24%), Al2O3 (15.70%-17.22%) and alkali (5.28%-6.60%) contents, and moderate Mg# values (molar ratios of MgO/(MgO+TFeO), 0.51-0.54). The fractionation between light rare earth elements (LREEs) and high rare earth elements (HREEs) and fractionation of LREEs are remarkable ((La/Yb)N=17.58-22.28, (La/Sm)N=4.72-5.18), while the Eu anormalies are negligible (δEu=0.84-0.99). All rocks are significantly enriched in large iron lithophile elements (LILEs) and are slightly enriched in high field strength elements (HFSEs), with lower contents of transition elements than primitive mantle. They have εNd, (87Sr/86Sr)i, (206Pb/204Pb)i, (207Pb/204Pb)i and (208Pb/204Pb)i values of +3.45, 0.707 5, 18.769 9, 15.733 7 and 39.110 0, respectively, displaying transitional features between OIB and EMII. Mineralogical, geochemical and Nd-Hf isotopic characteristics suggest that the Tiemuli diabase porphyrite was generated in asthenosphere and the partial melting took place in garnet stability field. The alkali basalt magma was derived from small degree of decompression melting of depleted asthenospheric mantle and contamination of crustal materials was minor. Fractional crystallization of clinopyroxene, apatite and Fe-Ti oxides took place during the basaltic magma evolution. Some enriched components from lithospheric mantle might be involved in. The Cretaceous alkali basaltic rocks developed interior of South China were formed in intracontinental extension (rift-like) regime related to regional lithospheric extension and deep-penetrating faults.

       

    • loading
    • Asimow, P. D., Hirschmann, M. M., Stolper, E. M., 2001. Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts, IV. Adiabatic Decompression and the Composition and Mean Properties of Mid-Ocean Ridge Basalts. Journal of Petrology, 42(5): 963-998. https://doi.org/10.1093/petrology/42.5.963
      Chen, R., Zhou, J. C., 1999. Information of Crust-Mantle Interaction Implied in Early Cretaceous Composite Lavas and Dikes from Eastern Zhejiang. Geological Review, 45(S1): 784-795(in Chinese with English abstract). http://www.researchgate.net/publication/309564579_Information_of_crust-mantle_interaction_implied_in_Early_Cretaceous_composite_lavas_and_dikes_from_east_Zhejiang
      Deng, P., Shu, L. S., Yang, M. G., et al., 2003. Geological Features and Dynamic Evolution of the Ganjiang Fault in Jiangxi Province. Geological Review, 49(2): 113-122(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200302000.htm
      Elhlou, S., Belousova, E., Griffin, W. L., et al., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochimica et Cosmochimica Acta, 70(18): A158. https://doi.org/10.1016/j.gca.2006.06.1383
      Fan, Q. C., Liu, R. X., Lin, Z. R., et al., 1997. The Experimental Study about the Spinel-Garnet Phase Transition in Upper-Mantle and Its Implication. Scientia Sinica Terrae, 27(2): 109-114(in Chinese).
      Fan, W. M., Wang, Y. J., Guo, F., et al., 2003. Mesozoic Mafic Magmatism in Hunan-Jiangxi Provinces and the Lithospheric Extension. Earth Science Frontiers, 10(3): 159-169(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200303022.htm
      Frey, F. A., Green, D. H., Roy, S. D., 1978. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data.Journal of Petrology, 19(3): 463-513. https://doi.org/10.1093/petrology/19.3.463
      Gast, P. W., 1968. Trace Element Fractionation and the Origin of Tholeiitic and Alkaline Magma Types. Geochimica et Cosmochimica Acta, 32(10): 1057-1086. https://doi.org/10.1016/0016-7037(68)90108-7
      Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm
      Huang, Y. M., Hawkesworth, C., Smith, I., et al., 2000. Geochemistry of Late Cenozoic Basaltic Volcanism in Northland and Coromandel, New Zealand: Implications for Mantle Enrichment Processes. Chemical Geology, 164(3-4): 219-238. https://doi.org/10.1016/s0009-2541(99)00145-x
      Humayun, M., Qin, L. P., Norman, M. D., 2004. Geochemical Evidence for Excess Iron in the Mantle beneath Hawaii. Science, 306(5693): 91-94. https://doi.org/10.1126/science.1101050
      Jackson, M. G., Dasgupta, R., 2008. Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts. Earth and Planetary Science Letters, 276(1-2): 175-186. https://doi.org/10.1016/j.epsl.2008.09.023
      Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1-2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
      Jiang, C. Y., An, S. Y., 1984. On Chemical Characteristics of Calcic Amphiboles from Igneous Rocks and Their Petrogenesis Significance. Journal of Mineralogy and Petrology, 4(3): 1-9(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWYS198403000.htm
      Kushiro, I., 1960. Si-Al Relation in Clinopyroxenes from Igneous Rocks. American Journal of Science, 258(8): 548-554. https://doi.org/10.2475/ajs.258.8.548
      le Bas, M. J., le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
      Lei, Z. L., Zeng, G., Wang, X. J., et al., 2019. Mantle Source Lithology of Late Mesozoic Mafic Dikes in Southeastern China.Earth Science, 44(4): 1159-1170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904008.htm
      Li, J. W., Zhou, M. F., Li, X. F., et al., 2001. The Hunan-Jiangxi Strike-Slip Fault System in Southern China: Southern Termination of the Tan-Lu Fault. Journal of Geodynamics, 32(3): 333-354. https://doi.org/10.1016/s0264-3707(01)00033-3
      Li, X. H., Chung, S. L., Zhou, H. W., et al., 2004. Jurassic Intraplate Magmatism in Southern Hunan-Eastern Guangxi: 40Ar/39Ar Dating, Geochemistry, Sr-Nd Isotopes and Implications for the Tectonic Evolution of SE China.Geological Society, London, Special Publications, 226(1): 193-215. https://doi.org/10.1144/gsl.sp.2004.226.01.11
      Li, X. H., Hu, R. Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China.Geochimica, 26(2): 14-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX702.003.htm
      Liu, F., Li, K., Huang, G. C., et al., 2018. Zircon U-Pb Geochronology and Geochemical Characteristics of the Kunlunguan A-Type Granite in Central Guangxi. Earth Science, 43(7): 2313-2329(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201807009.htm
      Lou, F., Ma, H. M., Liu, Y. Y., et al., 2011. Time-Space Distribution and Formation Mechanism of the Mesozoic Mafic Dikes in Southeast China.Earth Science Frontiers, 18(1): 15-23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201101004.htm
      Loubet, M., Sassi, R., di Donato, G., 1988. Mantle Heterogeneities: A Combined Isotope and Trace Element Approach and Evidence for Recycled Continental Crust Materials in Some OIB Sources. Earth and Planetary Science Letters, 89(3-4): 299-315. https://doi.org/10.1016/0012-821x(88)90118-5
      Lu, L., Liang, T., Zhao, Z., et al., 2018. A Unique Association of Scheelite and Magnetite in the Tiemuli W-Fe Skarn Deposit: Implications for Early Cretaceous Metallogenesis in the Nanling Region, South China.Ore Geology Reviews, 94: 136-154. https://doi.org/10.1016/j.oregeorev.2018.01.028
      Maier, W. D., Arndt, N. T., Curl, E. A., 2000. Progressive Crustal Contamination of the Bushveld Complex: Evidence from Nd Isotopic Analyses of the Cumulate Rocks. Contributions to Mineralogy and Petrology, 140(3): 316-327. https://doi.org/10.1007/s004100000186
      Meng, L. F., Li, Z. X., Chen, H. L., et al., 2012. Geochronological and Geochemical Results from Mesozoic Basalts in Southern South China Block Support the Flat-Slab Subduction Model. Lithos, 132-133: 127-140. https://doi.org/10.1016/j.lithos.2011.11.022
      Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      Morimoto, N., Huang, W. K., 1988. Nomenclature of Pyroxene. Acta Mineralogica Sinica, 8(4): 289-305(in Chinese). doi: 10.1007/BF01226262
      Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. https://doi.org/10.1016/0012-821x(73)90129-5
      Peng, T. P., Wang, Y. J., Jiang, Z. M., et al., 2004. 40Ar/39Ar Geochronology and Geochemistry of Cretaceous Basaltic Rocks for the Central and Northwestern Jiangxi Province. Earth Science, 33(5): 447-458(in Chinese with English abstract). http://www.researchgate.net/publication/303161352_40Ar39Ar_geochronology_and_geochemistry_of_Cretaceous_basaltic_rocks_for_the_central_and_northwestern_Jiangxi_Province
      Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. Elsevier, Amsterdam.
      Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract).
      Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon: A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
      Song, P. H., Zhang, X. M., Liu, Y. S., et al., 2017. Moho Imaging Based on Receiver Function Analysis with Teleseismic Wavefield Reconstruction: Application to South China.Tectonophysics, 718: 118-131. https://doi.org/10.1016/j.tecto.2017.05.031
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Thompson, R. N., Morrison, M. A., 1988. Asthenospheric and Lower-Lithospheric Mantle Contributions to Continental Extensional Magmatism: An Example from the British Tertiary Province. Chemical Geology, 68(1-2): 1-15. https://doi.org/10.1016/0009-2541(88)90082-4
      Wang, K. F., Plank, T., Walker, J. D., et al., 2002. A Mantle Melting Profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107(B1): ECV 5-1-ECV 5-21. https://doi.org/10.1029/2001jb000209
      Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45(3): 263-286. https://doi.org/10.2747/0020-6814.45.3.263
      Wang, Y. J., Liao, C. L., Fan, W. M., et al., 2004. Early Mesozoic OIB-Type Alkaline Basalt in Central Jiangxi Province and Its Tectonic Implications. Geochimica, 33(2): 109-117(in Chinese with English abstract). http://www.researchgate.net/publication/285298235_Early_Mesozoic_OIB-type_alkaline_basalt_in_central_Jiangxi_Province_and_its_tectonic_implications
      Winchester, J. A., Floyd, P. A., 1976. Geochemical Magma Type Discrimination: Application to Altered and Metamorphosed Basic Igneous Rocks. Earth and Planetary Science Letters, 28(3): 459-469. https://doi.org/10.1016/0012-821x(76)90207-7
      Xie, X., Xu, X. S., Zou, H. B., et al., 2005. Prelude of Mesozoic Large-Scale Magmatism in Southeast China: The Early Middle Jurassic Basalts. Scientia Sinica Terrae, 35(7): 587-605(in Chinese).
      Yu, D. G., Wang, Y., Zhang, G. Q., 2005. Mineralogical Characteristics and Significance of Multi-Generation Pyroxene of Cenozoic Basic-Rock in Guangfeng Basin. Journal of East China Institute of Technology, 28(4): 301-305(in Chinese with English abstract).
      Zhang, Q., 1992. The Mafic-Ultramafic Rocks and Wilson Cycle. Acta Petrologica Sinica, 8(2): 168-176(in Chinese with English abstract). http://www.jourlib.org/paper/1470066
      Zhao, Z. H., Bao, Z. W., Zhang, B. Y., 1998. Geochemical Characteristics of the Mesozoic Basalts in Southern Hunan Province. Scientia Sinica Terrae, 28(Suppl. 2): 7-14(in Chinese).
      Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
      陈荣, 周金城, 1999. 浙东早白垩世复合岩流和岩墙中蕴含的壳幔作用信息. 地质论评, 45(S1): 784-795. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1113.htm
      邓平, 舒良树, 杨明桂, 等, 2003. 赣江断裂带地质特征及其动力学演化. 地质论评, 49(2): 113-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200302000.htm
      樊祺诚, 刘若新, 林卓然, 等, 1997. 上地幔尖晶石-石榴石相转变实验研究及其意义. 中国科学: 地球科学, 27(2): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199702002.htm
      范蔚茗, 王岳军, 郭锋, 等, 2003. 湘赣地区中生代镁铁质岩浆作用与岩石圈伸展. 地学前缘, 10(3): 159-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303022.htm
      侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm
      姜常义, 安三元, 1984. 论火成岩中钙质角闪石的化学组成特征及其岩石学意义. 矿物岩石, 4(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198403000.htm
      雷祝梁, 曾罡, 王小均, 等, 2019. 中国东南部晚中生代基性岩脉地幔源区的岩性演化历史. 地球科学, 44(4): 1159-1170. doi: 10.3799/dqkx.2019.021
      李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX702.003.htm
      刘飞, 李堃, 黄圭成, 等, 2018. 桂中昆仑关A型花岗岩锆石U-Pb年代学与地球化学特征. 地球科学, 43(7): 2313-2329. doi: 10.3799/dqkx.2018.180
      娄峰, 马浩明, 刘延勇, 等, 2011. 中国东南部中生代基性岩脉时空分布与形成机理. 地学前缘, 18(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201101004.htm
      Morimoto, N., 黄婉康, 1988. 辉石命名法. 矿物学报, 8(4): 289-305. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198804000.htm
      彭头平, 王岳军, 江志敏, 等, 2004. 江西中西部地区白垩纪玄武质岩石的40Ar/39Ar年代学和地球化学研究. 地球化学, 33(5): 447-458. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405002.htm
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
      王岳军, 廖超林, 范蔚茗, 等, 2004. 赣中地区早中生代OIB碱性玄武岩的厘定及构造意义. 地球化学, 33(2): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200402000.htm
      谢昕, 徐夕生, 邹海波, 等, 2005. 中国东南部晚中生代大规模岩浆作用序幕: J2早期玄武岩. 中国科学: 地球科学, 35(7): 587-605. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200507000.htm
      余达淦, 王勇, 张国庆, 2005. 广丰新生代基性岩多世代辉石矿物学特征及意义. 东华理工学院学报, 28(4): 301-305. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200504001.htm
      张旗, 1992. 镁铁-超镁铁岩与威尔逊旋回. 岩石学报, 8(2): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199202007.htm
      赵振华, 包志伟, 张伯友, 1998. 湘南中生代玄武岩类地球化学特征. 中国科学: 地球科学, 28(增刊2): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S2001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (1661) PDF downloads(67) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return