• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 5
    May  2021
    Turn off MathJax
    Article Contents
    He Mouchun, Ding Zhenju, Wei Lianxi, Zhou Tengfei, 2021. Geochemical Characteristics and Metallogenic Significance of Lower Permian Shuangqiaozi Formation in Taiping Mountains, Heilongjiang Province. Earth Science, 46(5): 1537-1553. doi: 10.3799/dqkx.2020.105
    Citation: He Mouchun, Ding Zhenju, Wei Lianxi, Zhou Tengfei, 2021. Geochemical Characteristics and Metallogenic Significance of Lower Permian Shuangqiaozi Formation in Taiping Mountains, Heilongjiang Province. Earth Science, 46(5): 1537-1553. doi: 10.3799/dqkx.2020.105

    Geochemical Characteristics and Metallogenic Significance of Lower Permian Shuangqiaozi Formation in Taiping Mountains, Heilongjiang Province

    doi: 10.3799/dqkx.2020.105
    • Received Date: 2020-10-05
    • Publish Date: 2021-05-15
    • The metallogenic belt in the Taiping Mountains is one of the most important copper-gold polymetallic metallogenic belts in Heilongjiang Province,in which mesothermal hydrothermal vein dominates,followed by porphyry,epithermal and magmatic type deposits. The Lower Permian Shuangqiaozi Formation (P1s) is widely developed in this region,and is composed of pelite,siltstone,and sandstone,with multiple layers of intermediate-felsic volcanic rocks. The contents of Au,P,and Fe are relatively high in this stratum. In recent years,small scale gold deposits such as Lujiaoling,Wudaogou-23 Gongli have been found in Dongning County and Muleng City. The gold ore bodies are developed in P1s as veins,but the grade of gold is low,which directly affects the next step of exploration. Based on field investigations,in this paper it uses rock geochemistry,X-ray powder diffraction,and organic carbon analysis to determine the rock types,sedimentary sources,and sources of ore-forming elements such as Au. The contents of major elements display small variations. Compared with PAAS,the rocks are slightly depleted in Al2O3,P2O5,CaO,and MnO2,and moderately depleted in Na2O,MgO,TiO2,and Fe2O3. All trace elements except Zn yield lower contents. The total amount of rare earth elements is equivalent to that of North American shale,and the differentiation of light and heavy rare earth elements is slightly lower than that of North American shale. The rocks are dominated by clay minerals (illite,chlorite) and quartz,with various amounts of albite and minor carbonate minerals and pyrite. The TOC contents of the rock range from 0.22% to 2.52%,with an average of 1.10%. There is no correlation between the contents of Au and TOC and clay minerals. It is suggested that P1s in the area is composed of carbonaceous slate,and the sediments were mainly derived from the weathering products of quartzose sedimentary rocks,with a small amount derived from femic igneous rocks. The deposition environment is near-shore. The high contents of gold in the stratum were not brought by the fluids after diagenesis and adsorbed by the rich organic compounds or clay minerals,but derived from terrigenous weathering products. This indicates that the gold deposits developed in P1s in this area are not stratabound gold deposits,but hydrothermal vein type deposits controlled by faults.

       

    • loading
    • Akarish, A.I.M., El-Gohary, A.M., 2008. Petrography and Geochemistry of Lower Paleozoic Sandstones, East Sinai, Egypt: Implications for Provenance and Tectonic Setting. Journal of African Earth Sciences, 52: 43-54. doi: 10.1016/j.jafrearsci.2008.04.002
      Alvarez, N.O., Roser, B.P., 2007. Geochemistry of Black Shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source Weathering, Provenance and Tectonic Setting. Journal of South American Earth Sciences, 23 (4): 271-289. doi: 10.1016/j.jsames.2007.02.003
      Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contribution to Mineralogy and Petrology, 123: 323-333. https://doi.org/10.1007/s004100050159.
      Brownlw, E.C., 1979. Geochemisty. Prentie-Hal, New Jersey.
      Cullers, R.L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51: 181-203. doi: 10.1016/S0024-4937(99)00063-8
      Dey, S., Rai, A.K., Chaki, A., 2009. Palaeoweathering, Composition and Tectonics of Provenance of the Proterozoic Intracratonic Kaladgi-Badami Basin, Karnataka, Southern India: Evidence from Sandstone Petrography and Geochemistry. Journal of Asian Earth Sciences, 34 (6): 703-715. doi: 10.1016/j.jseaes.2008.10.003
      Disnar, J.R., Sureau, J.F., 1990. Organic Matter in Ore Genesis: Progress and Perspectives. Organic Geochemistry, 16(1-3): 577-599. doi: 10.1016/0146-6380(90)90072-8
      Fang, Y., He, M.C., Ding, Z.J., et al., 2020. Ore- Forming Fluid Characteristics and Genesis of the Wudaogou Gold Deposit in Dongning County, Heilongjiang Province. Geoscience, 34(2): 254-265 (in Chinese with English abstract).
      Floyd, P.A., Winchesrer, J.A., Park, R.G., 1989. Geochemistry and Tectonic Setting of Lewisian Clastic Metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, 45(1-3): 203-214. doi: 10.1016/0301-9268(89)90040-5
      Fralick, P.W., Kronberg, B.I., 1997. Geochemical Discrimination of Clastic Sedimentary Rock Sources. Sedimentary Geology, 113: 111-124. doi: 10.1016/S0037-0738(97)00049-3
      Haskin, L.A., Haskin, M.A., Frey, F.A., et al., 1968. Relative and Absolute Terrestrial Abundances of the Rare Earth Elements. Pergamon Press Ltd., Oxford.
      He, Y.S., Gao, F.H., Xiu, M., 2019. Age, Provenance and Tectonic Setting of Fuxingtun Formation in Zhangguangcai Range. Earth Science, 44(10): 3223-3236 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910005.htm
      Jiang, S. Y., Chen, Y. Q., Ling, H. F., et al., 2006. Trace- and Rare-Earth Element Geochemistry and Pb-Pb Dating of Black Shales and Intercalated Ni-Mo-PGE-Au Sulfide Ores in Lower Cambrian Strata, Yangtze Platform, South China. Mineralium Deposita, 41(5): 453-467. https://doi.org/10.1007/s00126-006-0066-6
      Kalsbeek, F., Frei, R., 2010. Geochemistry of Precambrian Sedimentary Rocks Used to Solve Stratigraphical Problem: An Example from the Neoproterozoic Volta Basin, Ghana. Precambrian Research, 176: 65-76. doi: 10.1016/j.precamres.2009.10.004
      Li, S.R., Gao, Z.M., 1996. Silicalite of Hydrothermal Origin in Lower Cambrian Black Rock Series of South China. Acta Mineralogica Sinica, 16(4): 416-422 (in Chinese with English abstract).
      Liu, J.J., Liu, Z.J., Yang, Y., et al., 2007. Research on the Organic Geochemistry and Biomarkers of the Large-Scale Barium Metallogenic Belt in the Southern Qinling Mountains, China. J. Mineral Petrol., 27(3): 39-48 (in Chinese with English abstract).
      Manikyamba, C., Kerrich, R., González-Álvarez, I., et al., 2008. Geochemistry of Paleoproterozoic Black Shales from the Intracontinental Cuddapah Basin, India: Implications for Provenance, Tectonic Setting, and Weathering Intensity. Precambrian Research, 162(3-4): 424-440. doi: 10.1016/j.precamres.2007.10.003
      McLennan, S.M., Hemming, S., Mcdaniel, D.K., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Geological Society America Special Paper, 284: 21-40. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg76/ref76&dbid=16&doi=10.1139%2Fcjes-2013-0144&key=10.1130%2FSPE284-p21
      Meng, E., Xu, W.L., Pei, F.P., et al., 2010. Detrital- Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt. Tectonophysics, 485: 42-51. doi: 10.1016/j.tecto.2009.11.015
      Mishra, M., Sen, S., 2010. Geological Signatures of Mesoproterozoic Siliciclastic Rocks of the Kaimur Group of the Vindhyan Supergroup, Central India. Chin. J. Geochem., 20: 21-32. http://www.ingentaconnect.com/content/ssam/10009426/2010/00000029/00000001/art00003
      Moosavirad, S.M., Janardhana, M.R., Sethumadhav, M.S., 2011. Geochemistry of Lower Jurassic Shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, Source Weathering and Tectonic Setting. Chemie der Erde, 71: 279-288. doi: 10.1016/j.chemer.2010.10.001
      Paikaray, S., Banerjee, S., Mukherji, S., 2008. Geochemistry of Shales from Palaeoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on Provenance, Tectonics and Paleoweathering. Journal of Asian Earth Sciences, 32: 34-48. doi: 10.1016/j.jseaes.2007.10.002
      Ren, J.S., Niu, B.G., Liu, Z.G., 1999. Soft Collision, Superposition Orogeny and Polycyclic Suturing. Earth Science Frontiers, 6(3): 85-93 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY199903010.htm
      Roser, B.P., Korsch, R.J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. Geology, 94: 635-650. doi: 10.1086/629071
      Roser, B.P., Korsch, R.J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67: 119-139. doi: 10.1016/0009-2541(88)90010-1
      Sengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364: 299-307. https://doi.org/10.1038/364299a0
      Spalletti, L.A., Queralt, I., Matheos, S.D., 2008. Sedimentary Petrology and Geochemistry of Siliciclastic Rocks from the Upper Jurassic Tordillo Formation (Neuquen Basin, Western Argentina): Implications for Provenance and Tectonic Setting. Journal of South American Earth Sciences, 25: 440-463. doi: 10.1016/j.jsames.2007.08.005
      Tang, K.D., Wang, Y., He, G.Q., et al., 1995. Continental-Margin Structure of Northeast China and Its Adjacent Areas. Acta Geologica Sinica, 69(1): 16-30 (in Chinese with English abstract).
      Wang, H., Ling, W.L., Duan, R.C., et al., 2012. Os Isotopic Geochemistry of Neoproterozoic-Cambrian Black Shales in Eastern Three Gorges of Yangtze Craton and Its Geological Significance. Earth Science, 37(3): 451-461 (in Chinese with English abstract).
      Wang, P.W., Chen, Z.H., Jin, Z.J., et al., 2019. Optimizing Parameter"Total Organic Carbon Content"for Shale Oil and Gas Resource Assesment: Taking West Canada Sedimentary Basin Devonian Duvernay Shale as an Example. Earth Science, 44(2): 504-512 (in Chinese with English abstract).
      Wilde, S.A., Wu, F.Y., Zhang, X.Z., 2003. Late Pan- African Magmatism in Northeastern China: SHRIMP U-Pb Zircon Evidence for Igneous Ages from the Mashan Complex. Precambrian Research, 122: 311-327. doi: 10.1016/S0301-9268(02)00217-6
      Wu, F.Y., Yang, J.H., Lo, C.H., et al., 2007. The Heilongjiang Group: A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China. The Island Arc, 16(1): 156-172. doi: 10.1111/j.1440-1738.2007.00564.x
      Xie, H.Q., Miao, L.C., Chen, F.K., et al., 2008a. Characteristics of the "Mashan Group" and Zircon SHRIMP U-Pb Dating of Granite in Muleng Area, Southeastern Heilongjiang Province, China: Constraint on Crustal Evolution of the Southern most of Jiamusi Massif. Geological Bulletin of China, 27(12): 2127-2137 (in Chinese with English abstract).
      Xie, H.Q., Zhang, F.C., Miao, L.C., et al., 2008b. Zircon SHRIMP U-Pb Dating of the Amphibolite from "Heilongjiang Group" and the Granite in Mudanjiang Area, NE China, and Its Geological Significance. Acta Petrologica Sinica, 24(6): 1237-1250 (in Chinese with English abstract).
      Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905017.htm
      Xu, W.L., Wang, F., Meng, E., et al., 2012. Paleozoic-Early Mesozoic Tectonic Evolution in the Eastern Heilongjiang Province, NE China: Evidence from Igneous Rock Association and U-Pb Geochronology of Detrital Zircons. Journal of Jilin University (Earth Science Edition), 42(5): 1378-1389 (in Chinese with English abstract).
      Zhou, J.B., Shi, A.G., Jing, Y., 2016. Combined NE China Blocks: Tectonic Evolution and Supercontinent Reconstructions. Journal of Jilin University (Earth Science Edition), 46(4): 1042-1055 (in Chinese with English abstract).
      Zhou, J.B., Wilde, S.A., 2013. The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Orogenic Belt. Gondwana Research, 23: 1365-1377. doi: 10.1016/j.gr.2012.05.012
      Zhou, J.B., Wilde, S.A., Zhang, X.Z., 2009. The Onset of Pacific Margin Accretion in NE China: Evidence from the Heilongjiang High-Pressure Metamorphic Belt. Tectonophysics, 478: 230-246. doi: 10.1016/j.tecto.2009.08.009
      Zhou, J.B., Wilde, S.A., Zhang, X.Z., et al., 2011. Early Paleozoic Metamorphic Rocks of the Erguna Block in the Great Xing'an Range, NE China: Evidence for the Timing of Magmatic and Metamorphic Events and Their Tectonic Implications. Tectonophysics, 499: 105-117. doi: 10.1016/j.tecto.2010.12.009
      Zhu, D.C., Zhu, L.D., Lin, L., et al., 2003. Organic Mineralization of Lead-Zinc Deposits in Devonian System, Xicheng Ore Field. Earth Science, 28(2): 201-208 (in Chinese with English abstract).
      方焱, 何谋惷, 丁振举, 等, 2020. 黑龙江省东宁县五道沟金矿成矿流体特征及矿床成因. 现代地质, 34(2): 254-265. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202002004.htm
      何雨思, 高福红, 修铭, 等, 2019. 张广才岭福兴屯组的形成时代、物源及构造背景. 地球科学, 44(10): 3223-3236. doi: 10.3799/dqkx.2019.145
      李胜荣, 高振敏, 1996. 华南下寒武统黑色岩系中的热水成因硅质岩. 矿物学报, 16(4): 416-422. doi: 10.3321/j.issn:1000-4734.1996.04.014
      刘家军, 柳振江, 杨艳, 等, 2007. 南秦岭大型钡成矿带有机地球化学特征与生物标志物研究. 矿物岩石, 27(3): 39-48. doi: 10.3969/j.issn.1001-6872.2007.03.008
      任纪舜, 牛宝贵, 刘志刚, 1999. 软碰撞、叠覆造山和多旋回缝合作用. 地学前缘, 6(3): 85-93. doi: 10.3321/j.issn:1005-2321.1999.03.008
      唐克东, 王莹, 何国琦, 等, 1995. 中国东北及邻区大陆边缘构造. 地质学报, 69(1): 16-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199501001.htm
      王浩, 凌文黎, 段瑞春, 等, 2012. 扬子克拉通峡东地区新元古代-寒武纪黑色岩系Os同位素地球化学特征及其地质意义. 地球科学, 37(3): 451-461. http://www.earth-science.net/article/id/2249
      王鹏威, 谌卓恒, 金之钧, 等, 2019. 页岩油气资源评价参数之总有机碳含量的优选: 以西加盆地泥盆系Duvernay页岩为例. 地球科学, 44(2): 504-512. doi: 10.3799/dqkx.2018.191
      颉颃强, 苗来成, 陈福坤, 等, 2008a. 黑龙江东南部穆棱地区"麻山群"的特征及花岗岩锆石SHRIMP U-Pb定年——对佳木斯地块最南缘地壳演化的制约. 地质通报, 27(12): 2127-2137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200812023.htm
      颉颃强, 张福成, 苗来成, 等, 2008b. 东北牡丹江地区"黑龙江群"中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义. 岩石学报, 24(6): 1237-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806008.htm
      许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036
      许文良, 王枫, 孟恩, 等, 2012. 黑龙江省东部古生代-早中生代的构造演化: 火成岩组合与碎屑锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 42(5): 1378-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205012.htm
      周建波, 石爱国, 景妍, 2016. 东北地块群: 构造演化与古大陆重建. 吉林大学学报(地球科学版), 46(4): 1042-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604005.htm
      朱弟成, 朱利东, 林丽, 等, 2003. 西成矿田泥盆系铅锌矿床中的有机质成矿作用. 地球科学, 28(2): 201-208. http://www.earth-science.net/article/id/1237
    • dqkxzx-46-5-1537-附表.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(5)

      Article views (1854) PDF downloads(94) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return