• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 8
    Aug.  2020
    Turn off MathJax
    Article Contents
    Gou Zhengbin, Liu Han, Duan Yaoyao, Li Jun, Zhang Shizhen, 2020. Timescales of Partial Melting in Yadong Region of Higher Himalayan Crystalline Sequence: Constraints from Zircon U-Pb Geochronology of Naiduila Migmatites. Earth Science, 45(8): 2894-2904. doi: 10.3799/dqkx.2020.110
    Citation: Gou Zhengbin, Liu Han, Duan Yaoyao, Li Jun, Zhang Shizhen, 2020. Timescales of Partial Melting in Yadong Region of Higher Himalayan Crystalline Sequence: Constraints from Zircon U-Pb Geochronology of Naiduila Migmatites. Earth Science, 45(8): 2894-2904. doi: 10.3799/dqkx.2020.110

    Timescales of Partial Melting in Yadong Region of Higher Himalayan Crystalline Sequence: Constraints from Zircon U-Pb Geochronology of Naiduila Migmatites

    doi: 10.3799/dqkx.2020.110
    • Received Date: 2020-04-13
    • Publish Date: 2020-08-15
    • The Higher Himalayan Crystalline Sequence is composed mainly of middle-high grade metamorphic rocks and leucogranites, forming a natural laboratory for studying the formation and evolution of the Himalayan orogen. However, the geological significance of the U-Pb ages remains controversial because zircons and monazites of the migmatites and leucogranites from the Higher Himalayan Crystalline Sequence commonly have yielded variable U-Pb ages, which significantly restricts our understanding of timing and duration of metamorphism, partial melting and melt crystallization of the orogen.Here it presents zircon U-Pb geochronological study of the Naiduila migmatites in Yadong region from the upper structural level of the Higher Himalayan Crystalline Sequence, middle Himalaya. The results show that zircons from the melanosomes of the migmatites in Naiduila area have variable U-Pb ages ranging from 29.1 to 24.7 Ma, and zircons from the leucosomes of the migmatites yield various U-Pb ages of 25.0-13.7 Ma. The former may be interpreted as the timing and duration of prograde metamorphism and partial melting, and the latter represents timescales of retrogressive metamorphism and melt crystallization.Therefore, it is proposed that the partial melting of the Higher Himalayan Crystalline Sequence in the Yadong region initiated at ca.30 Ma and lasted to ca.13 Ma, indicating that it is a long-term and sustained process. The study also indicates that the timing of partial melting of the Higher Himalayan Crystalline Sequence is earlier than the starting activation of the South Tibetan detachment and the Main Central Thrust. This may further indicates that the partial melting occurred during subduction. The study provides new information on the structural evolution model of the orogen.

       

    • loading
    • Ambrose, T. K., Larson, K. P., Guilmette, C., et al., 2015. Lateral Extrusion, Underplating, and Out-of-Sequence Thrusting within the Himalayan Metamorphic Core, Kanchenjunga, Nepal. Lithosphere, 7(4):441-464. https://doi.org/10.1130/l437.1
      Bea, F., Pereira, M. D., Stroh, A., 1994. Mineral/Leucosome Trace-Element Partitioning in a Peraluminous Migmatite (a Laser Ablation-ICP-MS Study). Chemical Geology, 117(1-4):291-312. https://doi.org/10.1016/0009-2541(94)90133-3
      Carosi, R., Montomoli, C., Langone, A., et al., 2015. Eocene Partial Melting Recorded in Peritectic Garnets from Kyanite-Gneiss, Greater Himalayan Sequence, Central Nepal. Geological Society, London, Special Publications, 412(1):111-129. https://doi.org/10.1144/sp412.1
      Corfu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
      Corrie, S. L., Kohn, M. J., 2011. Metamorphic History of the Central Himalaya, Annapurna Region, Nepal, and Implications for Tectonic Models. Geological Society of America Bulletin, 123(9-10):1863-1879. https://doi.org/10.1130/b30376.1
      Cottle, J. M., Searle, M. P., Horstwood, M. S. A., et al., 2009. Timing of Midcrustal Metamorphism, Melting, and Deformation in the Mount Everest Region of Southern Tibet Revealed by U(-Th)-Pb Geochronology. The Journal of Geology, 117(6):643-664. https://doi.org/10.1086/605994
      Cui, H.J., Gou, Z.B., Liu, H., et al., 2019. The Petrogenesis and Tectonic Significance of the Late Early Cretaceous Granodiorites in the Nyixung Area, Western Lhasa Block, Xizang. Sedimentary Geology and Tethyan Geology, 39(1):1-13 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201901001
      Ding, H.X., Zhang, Z.M., Li, M.M., et al., 2017. Metamorphism and Tectonic Significance of the Greater Himalayan Crystalline Sequence in Cona Region, Eastern Himalaya. Acta Petrologica Sinica, 33(8):2357-2376 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201708003
      Fu, J.G., Li, G.M., Wang, G.H., et al., 2018. Timing of E-W Extension Deformation in North Himalaya:Evidences from Ar-Ar Age in the Cuonadong Dome, South Tibet. Earth Science, 43(8):2638-2650 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808008.htm
      Godin, L., Grujic, D., Law, R. D., et al., 2006. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones:An Introduction. Geological Society, London, Special Publications, 268(1):1-23. https://doi.org/10.1144/gsl.sp.2006.268.01.01
      Gou, Z. B., Dong, X., Wang, B. D., 2019. Petrogenesis and Tectonic Implications of the Paiku Leucogranites, Northern Himalaya. Journal of Earth Science, 30(3):525-534. https://doi.org/10.1007/s12583-019-1219-8
      Gou, Z. B., Zhang, Z. M., Dong, X., et al., 2016. Petrogenesis and Tectonic Implications of the Yadong Leucogranites, Southern Himalaya. Lithos, 256-257:300-310. https://doi.org/10.1016/j.lithos.2016.04.009
      Groppo, C., Rolfo, F., Indares, A., 2012. Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal:The Effect of Decompression and Implications for the 'Channel Flow' Model. Journal of Petrology, 53(5):1057-1088. https://doi.org/10.1093/petrology/egs009
      Groppo, C., Rubatto, D., Rolfo, F., et al., 2010. Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley, Eastern Nepal Himalaya). Lithos, 118(3-4):287-301. https://doi.org/10.1016/j.lithos.2010.05.003
      Guilmette, C., Indares, A., Hébert, R, 2011. High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications. Lithos, 124(1-2):66-81. https://doi.org/10.1016/j.lithos.2010.09.003
      Iaccarino, S., Montomoli, C., Carosi, R., et al., 2015. Pressure-Temperature-Time-Deformation Path of Kyanite-Bearing Migmatitic Paragneiss in the Kali Gandaki Valley (Central Nepal):Investigation of Late Eocene-Early Oligocene Melting Processes. Lithos, 231:103-121. https://doi.org/10.1016/j.lithos.2015.06.005
      Imayama, T., Takeshita, T., Yi, K., et al., 2012. Two-Stage Partial Melting and Contrasting Cooling History within the Higher Himalayan Crystalline Sequence in the Far-Eastern Nepal Himalaya. Lithos, 134-135:1-22. https://doi.org/10.1016/j.lithos.2011.12.004
      Kali, E., Leloup, P. H., Arnaud, N., et al., 2010. Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range:Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models. Tectonics, 29:TC2014. https://doi.org/10.1029/2009tc002551
      Kohn, M. J., Corrie, S. L., 2011. Preserved Zr-Temperatures and U-Pb Ages in High-Grade Metamorphic Titanite:Evidence for a Static Hot Channel in the Himalayan Orogen. Earth and Planetary Science Letters, 311(1-2):136-143. https://doi.org/10.1016/j.epsl.2011.09.008
      Li, W.C., Zhang, Z.M., Xiang, H., et al., 2015. Metamorphism and Anatexis of the Himalayan Orogen:Petrology and Geochronology of HP Pelitic Granulites from the Yadong Area, Southern Tibet. Acta Petrologica Sinica, 31(5):1219-1234 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201505003.htm
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K.R., 2003. ISOPLOT: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
      Pan, G.T., Wang, L.Q., Li, X.Z., et al., 2001. The Tectonic Framework and Spatial Allocation of the Archipelagic Arc Basin Systems on the Qinghai-Xizang Plateau. Sedimentary Geology and Tethyan Geology, 21(3):1-26 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200103001
      Patiño Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4):689-710. https://doi.org/10.1093/petroj/39.4.689
      Regis, D., Warren, C. J., Mottram, C. M., et al., 2016. Using Monazite and Zircon Petrochronology to Constrain the P-T-t Evolution of the Middle Crust in the Bhutan Himalaya. Journal of Metamorphic Geology, 34(6):617-639. https://doi.org/10.1111/jmg.12196
      Rubatto, D., Chakraborty, S., Dasgupta, S., 2013. Timescales of Crustal Melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) Inferred from Trace Element-Constrained Monazite and Zircon Chronology. Contributions to Mineralogy and Petrology, 165(2):349-372. https://doi.org/10.1007/s00410-012-0812-y
      Sawyer, E.W., 2008. Atlas of Migmatites. NRC Research Press, Ottawa.
      Searle, M. P., Godin, L., 2003. The South Tibetan Detachment and the Manaslu Leucogranite:A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 111(5):505-523. https://doi.org/10.1086/376763
      Streule, M. J., Searle, M. P., Waters, D. J., et al., 2010. Metamorphism, Melting, and Channel Flow in the Greater Himalayan Sequence and Makalu Leucogranite:Constraints from Thermobarometry, Metamorphic Modeling, and U-Pb Geochronology. Tectonics, 29:TC5011. https://doi.org/10.1029/2009tc002533
      Wang, J. M., Zhang, J. J., Wang, X. X., 2013. Structural Kinematics, Metamorphic P-T Profiles and Zircon Geochronology across the Greater Himalayan Crystalline Complex in South-Central Tibet:Implication for a Revised Channel Flow. Journal of Metamorphic Geology, 31(6):607-628. https://doi.org/10.1111/jmg.12036
      Wang, J. M., Rubatto, D., Zhang, J. J., 2015. Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya):In-Sequence Thrusting and Its Implications. Journal of Petrology, 56(9):1677-1702. https://doi.org/10.1093/petrology/egv050
      Wang, J. M., Zhang, J. J., Liu, K., et al., 2016. Spatial and Temporal Evolution of Tectonometamorphic Discontinuities in the Central Himalaya:Constraints from P-T Paths and Geochronology. Tectonophysics, 679:41-60. https://doi.org/10.1016/j.tecto.2016.04.035
      Wang, L.Q., Pan, G.T., Li, D.M., et al., 2000. The Evolution and Mineralization of the Jomda-Weixi Continental Marginal Volcanic Arc, Southwestern China. Sedimentary Geology and Tethyan Geology, 20(2):1-17 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200002001
      Waters, D. J., 2001. The Significance of Prograde and Retrograde Quartz-bearing Intergrowth Microstructures in Partially Melted Granulite-Facies Rocks. Lithos, 56(1):97-110. https://doi.org/10.1016/s0024-4937(00)00061-x
      Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      Vannay, J. C., Hodges, K. V., 1996. Tectonometamorphic Evolution of the Himalayan Metamorphic Core between the Annapurna and Dhaulagiri, Central Nepal. Journal of Metamorphic Geology, 14(5):635-656. https://doi.org/10.1046/j.1525-1314.1996.00426.x
      Viskupic, K., Hodges, K. V., Bowring, S. A., 2005. Timescales of Melt Generation and the Thermal Evolution of the Himalayan Metamorphic Core, Everest Region, Eastern Nepal. Contributions to Mineralogy and Petrology, 149(1):1-21. https://doi.org/10.1007/s00410-004-0628-5
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zeiger, K., Gordon, S. M., Long, S. P., et al., 2015. Timing and Conditions of Metamorphism and Melt Crystallization in Greater Himalayan Rocks, Eastern and Central Bhutan:Insight from U-Pb Zircon and Monazite Geochronology and Trace-Element Analyses. Contributions to Mineralogy and Petrology, 169(5):47. https://doi.org/10.1007/s00410-015-1143-6
      Zhang, L.K., Zhang, Z., Li, G.M., et al., 2018. Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya. Earth Science, 43(8):2664-2683 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808010
      Zhang, Z.M., Dong, X., Ding, H.X., et al., 2017. Metamorphism and Partial Melting of the Himalayan Orogen. Acta Petrologica Sinica, 33(8):2313-2341 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201708001.htm
      Zhang, Z.M., Kang, D.Y., Ding, H.X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1):82-98 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801005
      崔浩杰, 苟正彬, 刘函, 等, 2019.拉萨地块西段尼雄地区早白垩世晚期花岗闪长岩的成因及构造意义.沉积与特提斯地质, 39(1):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201901001
      丁慧霞, 张泽明, 李梦梅, 等, 2017.喜马拉雅造山带东段错那地区高喜马拉雅结晶岩系的变质作用与构造意义.岩石学报, 33(8):2357-2376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201708003
      付建刚, 李光明, 王根厚, 等, 2018.北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹隆Ar-Ar年代学证据.地球科学, 43(8):2638-2650. doi: 10.3799/dqkx.2018.530
      李旺超, 张泽明, 向华, 等, 2015.喜马拉雅造山带核部的变质作用与部分熔融:亚东地区高压泥质麻粒岩的岩石学与年代学研究.岩石学报, 31(5):1219-1234. http://d.old.wanfangdata.com.cn/periodical/ysxb98201505003
      潘桂棠, 王立全, 李兴振, 等, 2001.青藏高原区域构造格局及其多岛弧盆系的空间配置.沉积与特提斯地质, 21(3):1-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200103001
      王立全, 潘桂棠, 李定谋, 等, 2000.江达-维西陆缘火山弧的形成演化及成矿作用.沉积与特提斯地质, 20(2):1-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200002001
      吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200416002
      张林奎, 张志, 李光明, 等, 2018.特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因.地球科学, 43(8):2664-2683. doi: 10.3799/dqkx.2018.141
      张泽明, 董昕, 丁慧霞, 等, 2017.喜马拉雅造山带的变质作用与部分熔融.岩石学报, 33(8):2313-2341. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201708001
      张泽明, 康东艳, 丁慧霞, 等, 2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. doi: 10.3799/dqkx.2018.005
    • dqkx-45-8-2894-Table1-2.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (1322) PDF downloads(73) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return