• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Zuo Renguang, Peng Yong, Li Tong, Xiong Yihui, 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
    Citation: Zuo Renguang, Peng Yong, Li Tong, Xiong Yihui, 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358. doi: 10.3799/dqkx.2020.111

    Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms

    doi: 10.3799/dqkx.2020.111
    • Received Date: 2020-04-03
    • Publish Date: 2021-01-15
    • Mining and integrating geological prospecting information using deep learning algorithms (DL) has become a frontier field of mathematical geoscience. DL,which is a machine learning algorithm with multiple hidden layers,starts to be used in mining the geological prospecting big data in recent years,and there are a series of issues to be solved in this field. In this study,we took the convolutional neural network (CNN) as an example to discuss two challenges of DL on mining geological prospecting big data,which include insufficient training samples and how to construct deep learning network structure. In this study,the data augmentation methods were applied to generate training dataset,duplicating and adding noise,and a number of number of experiments were carried out for determining the optimal hyper-parameters of a CNN model for mining and integrating geological prospecting big data. A case study from Southwest Fujian Province,China,was carried out to mine and integrate the geological,geophysical and geochemical multi-source prospecting information. The results obtained by CNN can provide clues for mineral exploration in this area.

       

    • Bengio, Y., Lamblin, P., Popovici, D., et al., 2007. Greedy Layer-Wise Training of Deep Networks. In Advances in Neural Information Processing Systems, London, 153-160.
      Chen, J. P., Li, J., Xie, S., et al., 2017. Geological Big Data Research in China. Journal of Geology, 41(3):353-366 (in Chinese with English abstract).
      Chen, J., Mao, X. C., Liu, Z.K., et al., 2020.Three-Dimensional Metallogenic Prediction Based on Random Forest Classification Algorithm for the Dayingezhuang Gold Deposit. Geotectonica et Metallogenia, 44(2):231-241 (in Chinese with English abstract).
      Chen, Y. L., Lu, L. J., Li, X. B., 2014. Application of Continuous Restricted Boltzmann Machine to Identify Multivariate Geochemical Anomaly. Journal of Geochemical Exploration, 140:56-63. https://doi.org/10.1016/j.gexplo.2014.02.013
      Chen, Y. L., Wu, W., Zhao, Q. Y., 2020. A Bat Algorithm-Based Data-Driven Model for Mineral Prospectivity Mapping. Natural Resources Research, 29(1):247-265. https://doi.org/10.1007/s11053-019-09589-z
      Chen, Y. Q., Zhao, P. D., 2009. Extraction and Integration of Geo-Anomalies Associated with Mineralization. Earth Science, 34(2):325-335(in Chinese with English abstract).
      Cheng, Q. M., 2012. Singularity Theory and Methods for Mapping Geochemical Anomalies Caused by Buried Sources and for Predicting Undiscovered Mineral Deposits in Covered Areas. Journal of Geochemical Exploration, 122:55-70. https://doi.org/10.1016/j.gexplo.2012.07.007
      Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al., 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems, London, 2672-2680.
      Graves, A., Mohamed, A. R., Hinton, G. E., 2013. Speech Recognition with Deep Recurrent Neural Networks. IEEE International Conference on Acoustics, Speech and Signal Processing, London, 6645-6649. http://doi.org/10.1109/ICASSP.2013.6638947
      He, K., Zhang, X., Ren, S., et al., 2016. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition, London, 770-778. https://doi.org/10.1109/CVPR.2016.90
      Hinton, G. E., Osindero, S., Teh, Y. W., 2006. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18(7):1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
      Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. ImageNet Classification with Deep Convolutional Neural Networks. Proceedings of the Advances in Neural Information Processing Systems, London, 1097-1105. https://doi.org/10.1145/3065386
      LeCun, Y., Bottou, L., Bengio, Y., et al., 1998. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278-2324. https://doi.org/10.1109/5.726791
      LeCun, Y., Huang, F. J., Bottou, L., 2004. Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2: II-104. https://doi.org/10.1109/CVPR.2004.1315150
      Li, S., Chen, J. P., Xiang, J., 2020. Applications of Deep Convolutional Neural Networks in Prospecting Prediction Based on Two-Dimensional Geological Big Data. Neural Computing and Applications, 32(7):2037-2053. https://doi.org/10.1007/s00521-019-04341-3
      Liu, X.Y., Zhou, Y. Z., 2019. Application of Association Rule Algorithm in Studying Abnormal Elemental Associations in Panxijing Area in Western Guangdong Province, China. Earth Science Frontiers, 26(4):125-130 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201904017.htm
      Liu, Y. P., Zhu, L. X., Zhou, Y. Z., 2018. Application of Convolutional Neural Network in Prospecting Prediction of Ore Deposits:Taking the Zhaojikou Pb-Zn Ore Deposit in Anhui Province as a Case. Acta Petrologica Sinica, 34(11):3217-3224 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201270234059.html
      Mignan, A., Broccardo, M., 2019. One Neuron Versus Deep Learning in Aftershock Prediction. Nature, 574(7776):E1-E3. https://doi.org/10.1038/s41586-019-1582-8
      Mishkin, D., Sergievskiy, N., Matas, J., 2017. Systematic Evaluation of Convolution Neural Network Advances on the Imagenet. Computer Vision and Image Understanding, 161:11-19. https://doi.org/10.1016/j.cviu.2017.05.007
      Szegedy, C., Liu, W., Jia, Y., et al., 2014. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, London, 1-9. https://doi.org/10.1109/CVPR.2015.7298594
      Vasconcelos, C. N., Vasconcelos, B. N., 2017. Convolutional neural network committees for melanoma classification with classical and expert knowledge based image transforms data augmentation. arXiv preprint arXiv: 1702.07025
      Wang, J., Perez, L., 2017. The Effectiveness of Data Augmentation in Image Classification Using Deep Learning. Convolutional Neural Networks Vis. Recignit: 1712.04621
      Weyn, J. A., Durran, D. R., Caruana, R., 2019. Can Machines Learn to Predict Weather? Using Deep Learning to Predict Gridded 500 hPa Geopotential Height from Historical Weather Data. Journal of Advances in Modeling Earth Systems, 11(8):2680-2693. https://doi.org/10.1029/2019ms001705
      Wu, C.L., Liu, G., Zhang, X, L., et al., 2016. Discussion on Geological Science Big Data and Its Applications. Chinese Science Bulletin, 61(16):1797-1807 (in Chinese with English abstract). doi: 10.1360/N972015-01035
      Xiao, K. Y., Sun, L., Li, N., et al., 2015. Mineral Resources Assessment under the Thought of Big Data. Geological Bulletin of China, 4(7):1266-1272 (in Chinese with English abstract). http://www.researchgate.net/publication/283105011_Mineral_resources_assessment_under_the_thought_of_big_data
      Xiong, Y. H., Zuo, R. G., Carranza, E. J. M., 2018. Mapping Mineral Prospectivity through Big Data Analytics and a Deep Learning Algorithm. Ore Geology Reviews, 102:811-817. https://doi.org/10.1016/j.oregeorev.2018.10.006
      Zhang, X. L., Wu, C. L, Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 2020, 45(2):634-644 (in Chinese with English abstract).
      Zhang, S., Xiao, K. Y., Carranza, E. J. M., et al., 2019. Integration of Auto-Encoder Network with Density-Based Spatial Clustering for Geochemical Anomaly Detection for Mineral Exploration. Computers & Geosciences, 130:43-56. https://doi.org/10.1016/j.cageo.2019.05.011
      Zhao, P. D., 2019. Characteristics and Rational Utilization of Geological Big Data. Earth Science Frontiers, 26(4):1-5(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201904002.htm
      Zhou, Y. Z., Chen, S., Zhang, Q., et al., 2018. Advances and Prospects of Big Data and Mathematical Geoscience. Acta Petrologica Sinica, 34(2):255-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201802001.htm
      Zuo, R. G., Xiong, Y. H., Wang, J., et al., 2019. Deep Learning and its Application in Geochemical Mapping. Earth-ScienceReviews, 192:1-14. https://doi.org/10.1016/j.earscirev.2019.02.023
      陈进, 毛先成, 刘占坤, 等, 2020.基于随机森林算法的大尹格庄金矿床三维成矿预测.大地构造与成矿学, 44(2):231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202002008.htm
      陈建平, 李靖, 谢帅, 等, 2017.中国地质大数据研究现状.地质学刊, 41(3):353-366. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201703001.htm
      陈永清, 赵鹏大, 2009.综合致矿地质异常信息提取与集成.地球科学-中国地质大学学报, 34(2):325-335. doi: 10.3321/j.issn:1000-2383.2009.02.016
      刘心怡, 周永章, 2019.关联规则算法在粤西庞西垌地区元素异常组合研究中的应用.地学前缘, 26(4):125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904017.htm
      刘艳鹏, 朱立新, 周永章, 2018.卷积神经网络及其在矿床找矿预测中的应用-以安徽省兆吉口铅锌矿床为例.岩石学报, 34(11):3217-3224. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811007.htm
      吴冲龙, 刘刚, 张夏林, 等, 2016.地质科学大数据及其利用的若干问题探讨.科学通报, 61(16):1797-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201616011.htm
      肖克炎, 孙莉, 李楠, 等, 2015.大数据思维下的矿产资源评价.地质通报, 34(7):1266-1272. doi: 10.3969/j.issn.1671-2552.2015.07.003
      张夏林, 吴冲龙, 周琦, 等, 2020.贵州超大型锰矿集区的多尺度三维地质建模.地球科学, 45(2):634-644. doi: 10.3799/dqkx.2018.384
      赵鹏大, 2019.地质大数据特点及其合理开发利用.地学前缘, 26(4):1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904002.htm
      周永章, 陈烁, 张旗, 等, 2018.大数据与数学地球科学研究进展-大数据与数学地球科学专题代序.岩石学报, 34(2):255-263. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802001.htm
    • Relative Articles

    • Cited by

      Periodical cited type(28)

      1. 林秋怡,左仁广. 迁移学习及其在固体地球科学中的应用. 地质科技通报. 2025(01): 346-356 .
      2. 李维禄,高思宇,杨锦坤,韩春花,韦广昊,孔敏. 面向多金属结核资源评价的大数据挖掘与融合. 吉林大学学报(地球科学版). 2025(01): 340-350 .
      3. 奚园园,王永茂,芦碧波,邢智峰,侯广顺. 基于深度学习单阶段算法的?类化石检测. 地球科学. 2024(03): 1154-1164 . 本站查看
      4. 刘鑫,王诗柔,石许华,苏程,鲁晨妍,钱晓园,孙侨阳,邓洪旦,杨蓉,程晓敢. 深度学习在活动构造与地貌研究中的应用. 地震地质. 2024(02): 277-296 .
      5. 王成彬,王明果,王博,陈建国,马小刚,蒋恕. 融合知识图谱的矿产资源定量预测. 地学前缘. 2024(04): 26-36 .
      6. 朱彪彪,曹伟,虞鹏鹏,张前龙,郭兰萱,原桂强,韩枫,王汉雨,周永章. 基于CiteSpace的地质大数据与人工智能研究热点及前沿分析. 地学前缘. 2024(04): 73-86 .
      7. 袁峰,李晓晖,田卫东,周官群,汪金菊,葛粲,国显正,郑超杰. 三维成矿预测关键问题. 地学前缘. 2024(04): 119-128 .
      8. 王鑫,尹振龙. 基于特征标签的电力计量大数据深度挖掘技术研究. 科技资讯. 2024(21): 91-93 .
      9. 黄啸坤,魏俊浩,石文杰,张新铭,高强,王双. 基于汇水盆地的化探异常识别与评价:以东昆仑乌拉斯太地区1∶5万水系沉积物地球化学测量为例. 地质科技通报. 2023(01): 324-338 .
      10. 彭忠益,孙立明. 大数据驱动下国家矿产资源安全战略管理现代化的研究框架与主要议题. 资源科学. 2023(02): 322-332 .
      11. 李梅,毛善君,赵明军. 煤矿智能地质保障系统研究进展与展望. 煤炭科学技术. 2023(02): 334-348 .
      12. 焦守涛,张旗,汤军,原杰,王振,陈万峰,蔡宏明,王跃. 量子科学与大数据科学:推动地质学跨越式发展的两大利器. 地学前缘. 2023(03): 294-307 .
      13. 胡进军,丁祎天,张辉,靳超越,汤超. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学. 2023(05): 1853-1864 . 本站查看
      14. 刘永胜,罗先熔,高文,刘攀峰,梁鸣,杨青松,石佳磊,孙瑶. 基于成分数据分析和多重分形滤波技术识别青海红垭豁地区地球化学异常. 矿物岩石地球化学通报. 2023(03): 602-614+674 .
      15. 于立红,张善良,王国君. 基于多源地学数据的找矿预测应用研究. 矿产勘查. 2023(08): 1432-1439 .
      16. 孟亦菲,郑贵洲,冀炜臻. 集成空间变换结构与深度残差网络的遥感影像场景分类方法. 地球科学. 2023(09): 3526-3538 . 本站查看
      17. 蒋果,周可法,王金林,白泳,孙国庆,汪玮. 基于深度学习的花岗伟晶岩型锂铍矿物识别研究. 地学前缘. 2023(05): 185-196 .
      18. 付偲,李超岭,张海燕,刘畅,李丰丹. 基于多模态特征融合的地质体识别方法. 地球科学. 2023(10): 3743-3752 . 本站查看
      19. 邰文星,周琦,杨成富,吴冲龙,赵平,刘建中,王泽鹏,何金坪,刘光富. 黔西南者相金矿床三维地质可视化建模及应用. 地球科学. 2023(11): 4017-4033 . 本站查看
      20. 黄鑫怀,李增华,邓腾,刘志锋,陈冠群,曾皓轩,郭世超. 基于机器学习的华南诸广山花岗岩体铀矿潜力评价. 地球科学. 2023(12): 4427-4440 . 本站查看
      21. 黄勇杰,高乐,杨田,张鑫. 基于多尺度特征和元学习的智能预测找矿靶区实验研究. 计算机应用研究. 2022(06): 1772-1778 .
      22. Jin Chen,Hong Tang,Wenkai Chen,Naisen Yang. A Prediction Method of Ground Motion for Regions without Available Observation Data(LGB-FS) and Its Application to both Yangbi and Maduo Earthquakes in 2021. Journal of Earth Science. 2022(04): 869-884 .
      23. 钟羽,曹梦雪,尹冬妹,路来君. 卷积神经网络在地球化学异常识别中的应用——以吉林省辉南—江源一带铁矿为例. 吉林地质. 2022(04): 51-56 .
      24. 张振杰,成秋明,杨玠,武国朋,葛云钊. 机器学习与成矿预测:以闽西南铁多金属矿预测为例. 地学前缘. 2021(03): 221-235 .
      25. 王功文,张智强,李瑞喜,李俊建,沙德铭,曾庆栋,庞振山,李大鹏,黄蕾蕾. 华北重点矿集区大数据三维/四维建模与深层次集成的资源预测评价. 中国科学:地球科学. 2021(09): 1594-1610 .
      26. 储德平,万波,李红,方芳,王润. 基于ELMO-CNN-BiLSTM-CRF模型的地质实体识别. 地球科学. 2021(08): 3039-3048 . 本站查看
      27. 郝慧珍,顾庆,胡修棉. 基于机器学习的矿物智能识别方法研究进展与展望. 地球科学. 2021(09): 3091-3106 . 本站查看
      28. 彭忠益,卢珊. 大数据驱动的国家矿产资源安全管理信息平台模型研究. 情报杂志. 2021(12): 163-168+202 .

      Other cited types(26)

    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (5066) PDF downloads(476) Cited by(54)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return