• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Zhang Zhiwei, Zhou Longquan, Cheng Wanzheng, Ruan Xiang, Liang Mingjian, 2015. Focal Mechanism Solutions of Lushan Mw6.6 Earthquake Sequence and Stress Field for Aftershock Zone. Earth Science, 40(10): 1710-1722. doi: 10.3799/dqkx.2015.154
    Citation: Li Jiarui, Niu Zigeng, Feng Lan, Yao Rui, Chen Xinxin, 2020. Simulation and Prediction of Extreme Temperature Indices in Yangtze and Yellow River Basins by CMIP5 Models. Earth Science, 45(6): 1887-1904. doi: 10.3799/dqkx.2020.116

    Simulation and Prediction of Extreme Temperature Indices in Yangtze and Yellow River Basins by CMIP5 Models

    doi: 10.3799/dqkx.2020.116
    • Received Date: 2020-01-17
    • Publish Date: 2020-06-15
    • To study the change characteristics of extreme temperature in the Yangtze and Yellow River basins,the output data from 22 general climate models (GCMs) of the coupled model intercomparison project phase 5 (CMIP5) were selected.The data were processed by accuracy evaluation and delta downscaling,then 16 extreme temperature indices were calculated based on these data. The ensemble reliability average (REA) results were selected for historical simulation and future prediction of extreme temperature over the two basins. The results show that the spatial characteristics of the observations are in good agreement with that of the REA values,except for the Sichuan basin. During the three periods(2020s,2050s,2080s) in future,the trends of the indices would continually decrease under the Representative Concentration Pathways (RCP) 4.5 scenario,while the trends of these indices would increase under the RCP8.5 scenario. The variation of the indices is similar before the 1940s under the RCP4.5 and RCP8.5 scenarios,however,the variation characteristics under RCP4.5 and RCP8.5 have a significant difference since the 1940s. In the future,most indices would show upward trends,especially in winter. Moreover,the difference of the cold extreme indices between the two basins are greater than the difference of the warm extreme indices.In general,warm extreme events in the Yangtze and Yellow River basins will be more serious in future.

       

    • Aguilar, E., Aziz Barry, A., Brunet, M., et al., 2009.Changes in Temperature and Precipitation Extremes in Western Central Africa, Guinea Conakry, and Zimbabwe, 1955-2006.Journal of Geophysical Research Atmospheres, 114(D2):D02115. https://doi.org/10.1029/2008jd011010
      Chapman, S.C., Watkins, N.W., Stainforth, D.A., 2019.Warming Trends in Summer Heatwaves.Geophysical Research Letters, 46(3):1634-1640. https://doi.org/10.1029/2018gl081004
      Fan, L.J., Fu, C.B., Chen, D.L., 2005.Review on Creating Future Climate Change Scenarios by Statistical Downscaling Techniques.Advances in Earth Science, 20(3):320-329(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200503009
      Feng, R., Yu, R.D., Zheng, H.W., et al., 2018.Spatial and Temporal Variations in Extreme Temperature in Central Asia.International Journal of Climatology, 38:e388-e400. https://doi.org/10.1002/joc.5379
      Fischer, E.M., Knutti, R., 2015.Anthropogenic Contribution to Global Occurrence of Heavy-Precipitation and High-Temperature Extremes.Nature Climate Change, 5(6):560-564. https://doi.org/10.1038/nclimate2617
      Giorgi, F., Hurrell, J.W., Marinucci, M.R., et al., 1997.Elevation Dependency of the Surface Climate Change Signal:A Model Study.Journal of Climate, 10(2):288-296. http://femsle.oxfordjournals.org/lookup/external-ref?access_num=10.1175/1520-0442(1997)0102.0.CO;2&link_type=DOI
      Giorgi, F., Mearns, L.O., 1991.Approaches to the Simulation of Regional Climate Change:A Review.Reviews of Geophysics, 29(2):191-216. https://doi.org/10.1029/90rg02636
      Guo, J.H., Huang, G.H., Wang, X.Q., et al., 2018.Dynamically-Downscaled Projections of Changes in Temperature Extremes over China.Climate Dynamics, 50:1045-1066. https://doi.org/10.1007/s00382-017-3660-7
      Hanson, S., Nicholls, R., Ranger, N., et al., 2011.A Global Ranking of Port Cities with High Exposure to Climate Extremes.Climatic Change, 104(1):89-111. https://doi.org/10.1007/s10584-010-9977-4
      Jones, B., O'Neill, B.C., McDaniel, L., et al., 2015.Future Population Exposure to US Heat Extremes.Nature Climate Change, 5:652-655. https://doi.org/10.1038/nclimate2631
      King, A.D., Karoly, D.J., Henley, B.J., 2017.Australian Climate Extremes at 1.5 ℃ and 2 ℃ of Global Warming.Nature Climate Change, 7:412-416. https://doi.org/10.1038/nclimate3296
      Li, S.S., Yang, S.N., 2015.Changes of Extreme Temperature Events in Beijing during 1960-2014.Scientia Geographica Sinica, 35(12):1640-1647(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201512019
      Liu, L.J., Li, C.A., Jie, D.M., et al., 2018.Paleoclimate Recorded by Phytolith in Anguli-Nuur Lake since Mid-Late Holocene.Earth Science, 43(11):4138-4148(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811029
      Maxwell, S.L., Butt, N., Maron, M., et al., 2019.Conservation Implications of Ecological Responses to Extreme Weather and Climate Events.Diversity and Distributions, 25(4):613-625. https://doi.org/10.1111/ddi.12878
      Panday, P.K., Thibeault, J., Frey, K.E., 2015.Changing Temperature and Precipitation Extremes in the Hindu Kush-Himalayan Region:An Analysis of CMIP3 and CMIP5 Simulations and Projections.International Journal of Climatology, 35(10):3058-3077. https://doi.org/10.1002/joc.4192
      Pepin, N., Bradley, R.S., Diaz, H.F., et al., 2015.Elevation-Dependent Warming in Mountain Regions of the World.Nature Climate Change, 5:424-430. https://doi.org/10.1038/nclimate2563
      Rangwala, I., Miller, J.R., Xu, M., 2009.Warming in the Tibetan Plateau:Possible Influences of the Changes in Surface Water Vapor.Geophysical Research Letters, 36(6). https://doi.org/10.1029/2009gl037245
      Riahi, K., Rao, S., Krey, V., et al., 2011.RCP 8.5:A Scenario of Comparatively High Greenhouse Gas Emissions.Climatic Change, 109(1-2):33-57. https://doi.org/10.1007/s10584-011-0149-y
      Sillmann, J., Kharin, V.V., Zhang, X., et al., 2013a.Climate Extremes Indices in the CMIP5 Multimodel Ensemble:Part 1.Model Evaluation in the Present Climate.Journal of Geophysical Research:Atmospheres, 118(4):1716-1733. https://doi.org/10.1002/jgrd.50203
      Sillmann, J., Kharin, V.V., Zwiers, F.W., et al., 2013b.Climate Extremes Indices in the CMIP5 Multimodel Ensemble:Part 2.Future Climate Projections.Journal of Geophysical Research:Atmospheres, 118(6):2473-2493. https://doi.org/10.1002/jgrd.50188
      Sillmann, J., Roeckner, E., 2008.Indices for Extreme Events in Projections of Anthropogenic Climate Change.Climatic Change, 86(1-2):83-104. https://doi.org/10.1007/s10584-007-9308-6
      Stocker, T., 2014.Climate Change 2013:The Physical Science Basis.Cambridge University Press, Cambridge.
      Stocker, T.F., Qin, D., Plattner, G.K., et al., 2013.IPCC, 2013:Climate Change 2013.Computational Geometry, 18:95-123. http://d.old.wanfangdata.com.cn/Periodical/qhbhyjjz201306007
      Sun, Q.H., Miao, C.Y., Duan, Q.Y., 2015.Projected Changes in Temperature and Precipitation in Ten River Basins over China in 21st Century.International Journal of Climatology, 35(6):1125-1141. https://doi.org/10.1002/joc.4043
      Sun, Q.H., Miao, C.Y., Duan, Q.Y., 2016.Extreme Climate Events and Agricultural Climate Indices in China:CMIP5 Model Evaluation and Projections.International Journal of Climatology, 36(1):43-61. https://doi.org/10.1002/joc.4328
      Taylor, K.E., 2001.Summarizing Multiple Aspects of Model Performance in a Single Diagram.Journal of Geophysical Research:Atmospheres, 106(D7):7183-7192. https://doi.org/10.1029/2000jd900719
      Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012.An Overview of CMIP5 and the Experiment Design.Bulletin of the American Meteorological Society, 93(4):485-498. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e25af06b6d0b93bec8e211bdc3bbfed0
      Thomson, A.M., Calvin, K.V., Smith, S.J., et al., 2011.RCP4.5:A Pathway for Stabilization of Radiative Forcing by 2100.Climatic Change, 109(1-2):77-94. https://doi.org/10.1007/s10584-011-0151-4
      Wang, Q.X., Fan, X.H., Wang, M.B., 2016.Evidence of High-Elevation Amplification versus Arctic Amplification.Scientific Reports, 6:19219. https://doi.org/10.1038/srep19219
      Wilby, R.L., Wigley, T.M.L., 1997.Downscaling General Circulation Model Output:A Review of Methods and Limitations.Progress in Physical Geography:Earth and Environment, 21(4):530-548. https://doi.org/10.1177/030913339702100403
      Xiang, F.F., Wang, L.C., Yao, R., et al., 2018.The Characteristics of Climate Change and Response of Vegetation in Three Gorges Reservoir Area.Earth Science, 43(Suppl.1):42-52(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx2018z1005
      Xu, K., Wu, C.H., Hu, B.X., 2019a.Projected Changes of Temperature Extremes over Nine Major Basins in China Based on the CMIP5 Multimodel Ensembles.Stochastic Environmental Research and Risk Assessment, 33(1):321-339. https://doi.org/10.1007/s00477-018-1569-2
      Xu, K., Xu, B.B., Ju, J.L., et al., 2019b.Projection and Uncertainty of Precipitation Extremes in the CMIP5 Multimodel Ensembles over Nine Major Basins in China.Atmospheric Research, 226:122-137. https://doi.org/10.1016/j.atmosres.2019.04.018
      Xu, Y., Gao, X.J., Giorgi, F., et al., 2018.Projected Changes in Temperature and Precipitation Extremes over China as Measured by 50 yr Return Values and Periods Based on a CMIP5 Ensemble.Advances in Atmospheric Sciences, 35(4):376-388. https://doi.org/10.1007/s00376-017-6269-1
      You, Q.L., Min, J.Z., Fraedrich, K., et al., 2014.Projected Trends in Mean, Maximum, and Minimum Surface Temperature in China from Simulations.Global and Planetary Change, 112:53-63. https://doi.org/10.1016/j.gloplacha.2013.11.006
      Yue, T.X., Zhao, N., Fan, Z.M., et al., 2016.CMIP5 Downscaling and Its Uncertainty in China.Global and Planetary Change, 146:30-37. https://doi.org/10.1016/j.gloplacha.2016.09.003
      Zhang, D.R., Zheng, J., Fan, J.L., et al., 2019.Spatiotemporal Variations of Extreme Temperature Indices in Different Climatic Zones of China over the Past 60 Years.Chinese Journal of Agrometeorology, 40(7):422-434(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgnyqx201907002
      Zhao, F.F., Xu, Z.X., 2007.Comparative Analysis on Downscaled Climate Scenarios for Headwater Catchment of Yellow River Using SDS and Delta Methods.Acta Meteorologica Sinica, 65(4):653-662(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb200704017
      Zhou, B.T., Wen, Q.H., Xu, Y., et al., 2014.Projected Changes in Temperature and Precipitation Extremes in China by the CMIP5 Multimodel Ensembles.Journal of Climate, 27(17):6591-6611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1fb87ebac6e075b35d5aa4178eb9fc0f
      Zhou, T.J., Yu, R.C., 2006.Twentieth-Century Surface Air Temperature over China and the Globe Simulated by Coupled Climate Models.Journal of Climate, 19(22):5843-5858. https://doi.org/10.1175/jcli3952.1
      范丽军, 符淙斌, 陈德亮, 2005.统计降尺度法对未来区域气候变化情景预估的研究进展.地球科学进展, 20(3):320-329. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200503009
      李双双, 杨赛霓, 2015.1960-2014年北京极端气温事件变化特征.地理科学, 35(12):1640-1647.
      刘林敬, 李长安, 介冬梅, 等, 2018.中-晚全新世以来安固里淖气候演变的植硅体记录.地球科学, 43(11):4138-4148. doi: 10.3799/dqkx.2018.614
      向菲菲, 王伦澈, 姚瑞, 等, 2018.三峡库区气候变化特征及其植被响应.地球科学, 43(增刊1):42-52. doi: 10.3799/dqkx.2018.912
      张大任, 郑静, 范军亮, 等, 2019.近60年中国不同气候区极端温度事件的时空变化特征.中国农业气象, 40(7):422-434. http://d.old.wanfangdata.com.cn/Periodical/zgnyqx201907002
      赵芳芳, 徐宗学, 2007.统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析.气象学报, 65(4):653-662. http://d.old.wanfangdata.com.cn/Periodical/qxxb200704017
    • Relative Articles

    • Cited by

      Periodical cited type(18)

      1. 龙鸿元,王丽霞,张珈玮,刘招,杨耘. 基于CMIP6气候情景的泾河流域水文模拟及预测. 水利水电技术(中英文). 2025(02): 89-103 .
      2. 何旭,缪子梅,田佳西,杨柳,张增信,朱斌. 基于CMIP 6多模式的长江流域气温、降水与径流预估. 南京林业大学学报(自然科学版). 2024(02): 1-8 .
      3. 杨国丽,唐中楠,李军. 基于SDSM的兰江流域未来气候情景预估. 武汉大学学报(工学版). 2024(05): 554-561 .
      4. 吴滨,刘卫林,郭慧芳,李香,何昊,刘丽娜. 基于CMIP5模式的不同集合方法对鄱阳湖流域降水及气温模拟能力的比较. 中国农村水利水电. 2023(01): 119-127 .
      5. 马阳,崔洋,张雯,李欣. 基于CMIP6模式的黄河流域宁夏段未来气温变化预估研究. 干旱气象. 2023(01): 43-53 .
      6. Lin Zhang,Yanfeng Liu,Menggui Jin,Xing Liang. Spatiotemporal Variability in Extreme Temperature Events in an Arid-Semiarid Region of China and Their Teleconnections with Large-Scale Atmospheric Circulation. Journal of Earth Science. 2023(04): 1201-1217 .
      7. 林北森,高华军,郑倩,蔡斌,陈德鑫,吕洪坤,向小华,夏长剑,李茂芬,耿召良,禹萱. 国内外雪茄烟主产区气候条件比较研究. 热带作物学报. 2023(07): 1515-1524 .
      8. 王双双,谢文强,延晓冬. CMIP6模式对中国气温日较差的模拟能力评估. 气候与环境研究. 2022(01): 79-93 .
      9. 宋帅峰,延晓冬. CMIP6全球气候模式对中国冬季寒潮频次模拟能力的评估. 气候与环境研究. 2022(01): 33-49 .
      10. 李晓蕾,王卫光,张淑林. 基于CMIP6多模式的长江流域未来降水变化趋势分析. 中国农村水利水电. 2022(03): 1-7+12 .
      11. 曹云,孙应龙,陈紫璇,延昊,钱拴. 2000—2020年黄河流域植被生态质量变化及其对极端气候的响应. 生态学报. 2022(11): 4524-4535 .
      12. 胡羽丰,汪吉,李振洪,彭建兵. 基于星载GNSS-R获取川藏交通廊道沿线地表土壤湿度. 地球科学. 2022(06): 2058-2068 . 本站查看
      13. 晋程绣,姜超,张曦月. CMIP6模式对中国西南地区气温的模拟与预估. 中国农业气象. 2022(08): 597-611 .
      14. 刘引鸽,包江川,杨雨欣,黄雪. 渭河流域1850-2005年降水及蒸发量变化时空特征. 水土保持研究. 2022(06): 224-232 .
      15. 庞静漪,刘布春,刘园,邱美娟,王珂依. CMIP5全球气候模式统计降尺度数据对辽宁省极端气温模拟能力评估. 中国农业气象. 2021(05): 351-363 .
      16. 李雅培,朱睿,刘涛,常亚斌,尹振良. 基于BCC-CSM2-MR模式的疏勒河流域未来气温降水变化趋势分析. 高原气象. 2021(03): 535-546 .
      17. 蒋艳,贺新光,邓宇鹏,章新平. 长江流域近地表气温对地理位置和高程的依赖性分析. 长江流域资源与环境. 2021(06): 1329-1342 .
      18. 杜懿,王大刚,祝金鑫. 基于CMIP5的中国西北地区暖湿化演变研究. 水资源与水工程学报. 2021(05): 61-69+77 .

      Other cited types(13)

    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(3)

      Article views (2000) PDF downloads(76) Cited by(31)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return