Citation: | Li Jiarui, Niu Zigeng, Feng Lan, Yao Rui, Chen Xinxin, 2020. Simulation and Prediction of Extreme Temperature Indices in Yangtze and Yellow River Basins by CMIP5 Models. Earth Science, 45(6): 1887-1904. doi: 10.3799/dqkx.2020.116 |
Aguilar, E., Aziz Barry, A., Brunet, M., et al., 2009.Changes in Temperature and Precipitation Extremes in Western Central Africa, Guinea Conakry, and Zimbabwe, 1955-2006.Journal of Geophysical Research Atmospheres, 114(D2):D02115. https://doi.org/10.1029/2008jd011010
|
Chapman, S.C., Watkins, N.W., Stainforth, D.A., 2019.Warming Trends in Summer Heatwaves.Geophysical Research Letters, 46(3):1634-1640. https://doi.org/10.1029/2018gl081004
|
Fan, L.J., Fu, C.B., Chen, D.L., 2005.Review on Creating Future Climate Change Scenarios by Statistical Downscaling Techniques.Advances in Earth Science, 20(3):320-329(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200503009
|
Feng, R., Yu, R.D., Zheng, H.W., et al., 2018.Spatial and Temporal Variations in Extreme Temperature in Central Asia.International Journal of Climatology, 38:e388-e400. https://doi.org/10.1002/joc.5379
|
Fischer, E.M., Knutti, R., 2015.Anthropogenic Contribution to Global Occurrence of Heavy-Precipitation and High-Temperature Extremes.Nature Climate Change, 5(6):560-564. https://doi.org/10.1038/nclimate2617
|
Giorgi, F., Hurrell, J.W., Marinucci, M.R., et al., 1997.Elevation Dependency of the Surface Climate Change Signal:A Model Study.Journal of Climate, 10(2):288-296. http://femsle.oxfordjournals.org/lookup/external-ref?access_num=10.1175/1520-0442(1997)0102.0.CO;2&link_type=DOI
|
Giorgi, F., Mearns, L.O., 1991.Approaches to the Simulation of Regional Climate Change:A Review.Reviews of Geophysics, 29(2):191-216. https://doi.org/10.1029/90rg02636
|
Guo, J.H., Huang, G.H., Wang, X.Q., et al., 2018.Dynamically-Downscaled Projections of Changes in Temperature Extremes over China.Climate Dynamics, 50:1045-1066. https://doi.org/10.1007/s00382-017-3660-7
|
Hanson, S., Nicholls, R., Ranger, N., et al., 2011.A Global Ranking of Port Cities with High Exposure to Climate Extremes.Climatic Change, 104(1):89-111. https://doi.org/10.1007/s10584-010-9977-4
|
Jones, B., O'Neill, B.C., McDaniel, L., et al., 2015.Future Population Exposure to US Heat Extremes.Nature Climate Change, 5:652-655. https://doi.org/10.1038/nclimate2631
|
King, A.D., Karoly, D.J., Henley, B.J., 2017.Australian Climate Extremes at 1.5 ℃ and 2 ℃ of Global Warming.Nature Climate Change, 7:412-416. https://doi.org/10.1038/nclimate3296
|
Li, S.S., Yang, S.N., 2015.Changes of Extreme Temperature Events in Beijing during 1960-2014.Scientia Geographica Sinica, 35(12):1640-1647(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201512019
|
Liu, L.J., Li, C.A., Jie, D.M., et al., 2018.Paleoclimate Recorded by Phytolith in Anguli-Nuur Lake since Mid-Late Holocene.Earth Science, 43(11):4138-4148(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811029
|
Maxwell, S.L., Butt, N., Maron, M., et al., 2019.Conservation Implications of Ecological Responses to Extreme Weather and Climate Events.Diversity and Distributions, 25(4):613-625. https://doi.org/10.1111/ddi.12878
|
Panday, P.K., Thibeault, J., Frey, K.E., 2015.Changing Temperature and Precipitation Extremes in the Hindu Kush-Himalayan Region:An Analysis of CMIP3 and CMIP5 Simulations and Projections.International Journal of Climatology, 35(10):3058-3077. https://doi.org/10.1002/joc.4192
|
Pepin, N., Bradley, R.S., Diaz, H.F., et al., 2015.Elevation-Dependent Warming in Mountain Regions of the World.Nature Climate Change, 5:424-430. https://doi.org/10.1038/nclimate2563
|
Rangwala, I., Miller, J.R., Xu, M., 2009.Warming in the Tibetan Plateau:Possible Influences of the Changes in Surface Water Vapor.Geophysical Research Letters, 36(6). https://doi.org/10.1029/2009gl037245
|
Riahi, K., Rao, S., Krey, V., et al., 2011.RCP 8.5:A Scenario of Comparatively High Greenhouse Gas Emissions.Climatic Change, 109(1-2):33-57. https://doi.org/10.1007/s10584-011-0149-y
|
Sillmann, J., Kharin, V.V., Zhang, X., et al., 2013a.Climate Extremes Indices in the CMIP5 Multimodel Ensemble:Part 1.Model Evaluation in the Present Climate.Journal of Geophysical Research:Atmospheres, 118(4):1716-1733. https://doi.org/10.1002/jgrd.50203
|
Sillmann, J., Kharin, V.V., Zwiers, F.W., et al., 2013b.Climate Extremes Indices in the CMIP5 Multimodel Ensemble:Part 2.Future Climate Projections.Journal of Geophysical Research:Atmospheres, 118(6):2473-2493. https://doi.org/10.1002/jgrd.50188
|
Sillmann, J., Roeckner, E., 2008.Indices for Extreme Events in Projections of Anthropogenic Climate Change.Climatic Change, 86(1-2):83-104. https://doi.org/10.1007/s10584-007-9308-6
|
Stocker, T., 2014.Climate Change 2013:The Physical Science Basis.Cambridge University Press, Cambridge.
|
Stocker, T.F., Qin, D., Plattner, G.K., et al., 2013.IPCC, 2013:Climate Change 2013.Computational Geometry, 18:95-123. http://d.old.wanfangdata.com.cn/Periodical/qhbhyjjz201306007
|
Sun, Q.H., Miao, C.Y., Duan, Q.Y., 2015.Projected Changes in Temperature and Precipitation in Ten River Basins over China in 21st Century.International Journal of Climatology, 35(6):1125-1141. https://doi.org/10.1002/joc.4043
|
Sun, Q.H., Miao, C.Y., Duan, Q.Y., 2016.Extreme Climate Events and Agricultural Climate Indices in China:CMIP5 Model Evaluation and Projections.International Journal of Climatology, 36(1):43-61. https://doi.org/10.1002/joc.4328
|
Taylor, K.E., 2001.Summarizing Multiple Aspects of Model Performance in a Single Diagram.Journal of Geophysical Research:Atmospheres, 106(D7):7183-7192. https://doi.org/10.1029/2000jd900719
|
Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012.An Overview of CMIP5 and the Experiment Design.Bulletin of the American Meteorological Society, 93(4):485-498. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e25af06b6d0b93bec8e211bdc3bbfed0
|
Thomson, A.M., Calvin, K.V., Smith, S.J., et al., 2011.RCP4.5:A Pathway for Stabilization of Radiative Forcing by 2100.Climatic Change, 109(1-2):77-94. https://doi.org/10.1007/s10584-011-0151-4
|
Wang, Q.X., Fan, X.H., Wang, M.B., 2016.Evidence of High-Elevation Amplification versus Arctic Amplification.Scientific Reports, 6:19219. https://doi.org/10.1038/srep19219
|
Wilby, R.L., Wigley, T.M.L., 1997.Downscaling General Circulation Model Output:A Review of Methods and Limitations.Progress in Physical Geography:Earth and Environment, 21(4):530-548. https://doi.org/10.1177/030913339702100403
|
Xiang, F.F., Wang, L.C., Yao, R., et al., 2018.The Characteristics of Climate Change and Response of Vegetation in Three Gorges Reservoir Area.Earth Science, 43(Suppl.1):42-52(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx2018z1005
|
Xu, K., Wu, C.H., Hu, B.X., 2019a.Projected Changes of Temperature Extremes over Nine Major Basins in China Based on the CMIP5 Multimodel Ensembles.Stochastic Environmental Research and Risk Assessment, 33(1):321-339. https://doi.org/10.1007/s00477-018-1569-2
|
Xu, K., Xu, B.B., Ju, J.L., et al., 2019b.Projection and Uncertainty of Precipitation Extremes in the CMIP5 Multimodel Ensembles over Nine Major Basins in China.Atmospheric Research, 226:122-137. https://doi.org/10.1016/j.atmosres.2019.04.018
|
Xu, Y., Gao, X.J., Giorgi, F., et al., 2018.Projected Changes in Temperature and Precipitation Extremes over China as Measured by 50 yr Return Values and Periods Based on a CMIP5 Ensemble.Advances in Atmospheric Sciences, 35(4):376-388. https://doi.org/10.1007/s00376-017-6269-1
|
You, Q.L., Min, J.Z., Fraedrich, K., et al., 2014.Projected Trends in Mean, Maximum, and Minimum Surface Temperature in China from Simulations.Global and Planetary Change, 112:53-63. https://doi.org/10.1016/j.gloplacha.2013.11.006
|
Yue, T.X., Zhao, N., Fan, Z.M., et al., 2016.CMIP5 Downscaling and Its Uncertainty in China.Global and Planetary Change, 146:30-37. https://doi.org/10.1016/j.gloplacha.2016.09.003
|
Zhang, D.R., Zheng, J., Fan, J.L., et al., 2019.Spatiotemporal Variations of Extreme Temperature Indices in Different Climatic Zones of China over the Past 60 Years.Chinese Journal of Agrometeorology, 40(7):422-434(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgnyqx201907002
|
Zhao, F.F., Xu, Z.X., 2007.Comparative Analysis on Downscaled Climate Scenarios for Headwater Catchment of Yellow River Using SDS and Delta Methods.Acta Meteorologica Sinica, 65(4):653-662(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb200704017
|
Zhou, B.T., Wen, Q.H., Xu, Y., et al., 2014.Projected Changes in Temperature and Precipitation Extremes in China by the CMIP5 Multimodel Ensembles.Journal of Climate, 27(17):6591-6611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1fb87ebac6e075b35d5aa4178eb9fc0f
|
Zhou, T.J., Yu, R.C., 2006.Twentieth-Century Surface Air Temperature over China and the Globe Simulated by Coupled Climate Models.Journal of Climate, 19(22):5843-5858. https://doi.org/10.1175/jcli3952.1
|
范丽军, 符淙斌, 陈德亮, 2005.统计降尺度法对未来区域气候变化情景预估的研究进展.地球科学进展, 20(3):320-329. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200503009
|
李双双, 杨赛霓, 2015.1960-2014年北京极端气温事件变化特征.地理科学, 35(12):1640-1647.
|
刘林敬, 李长安, 介冬梅, 等, 2018.中-晚全新世以来安固里淖气候演变的植硅体记录.地球科学, 43(11):4138-4148. doi: 10.3799/dqkx.2018.614
|
向菲菲, 王伦澈, 姚瑞, 等, 2018.三峡库区气候变化特征及其植被响应.地球科学, 43(增刊1):42-52. doi: 10.3799/dqkx.2018.912
|
张大任, 郑静, 范军亮, 等, 2019.近60年中国不同气候区极端温度事件的时空变化特征.中国农业气象, 40(7):422-434. http://d.old.wanfangdata.com.cn/Periodical/zgnyqx201907002
|
赵芳芳, 徐宗学, 2007.统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析.气象学报, 65(4):653-662. http://d.old.wanfangdata.com.cn/Periodical/qxxb200704017
|
1. | 龙鸿元,王丽霞,张珈玮,刘招,杨耘. 基于CMIP6气候情景的泾河流域水文模拟及预测. 水利水电技术(中英文). 2025(02): 89-103 . ![]() | |
2. | 何旭,缪子梅,田佳西,杨柳,张增信,朱斌. 基于CMIP 6多模式的长江流域气温、降水与径流预估. 南京林业大学学报(自然科学版). 2024(02): 1-8 . ![]() | |
3. | 杨国丽,唐中楠,李军. 基于SDSM的兰江流域未来气候情景预估. 武汉大学学报(工学版). 2024(05): 554-561 . ![]() | |
4. | 吴滨,刘卫林,郭慧芳,李香,何昊,刘丽娜. 基于CMIP5模式的不同集合方法对鄱阳湖流域降水及气温模拟能力的比较. 中国农村水利水电. 2023(01): 119-127 . ![]() | |
5. | 马阳,崔洋,张雯,李欣. 基于CMIP6模式的黄河流域宁夏段未来气温变化预估研究. 干旱气象. 2023(01): 43-53 . ![]() | |
6. | Lin Zhang,Yanfeng Liu,Menggui Jin,Xing Liang. Spatiotemporal Variability in Extreme Temperature Events in an Arid-Semiarid Region of China and Their Teleconnections with Large-Scale Atmospheric Circulation. Journal of Earth Science. 2023(04): 1201-1217 . ![]() | |
7. | 林北森,高华军,郑倩,蔡斌,陈德鑫,吕洪坤,向小华,夏长剑,李茂芬,耿召良,禹萱. 国内外雪茄烟主产区气候条件比较研究. 热带作物学报. 2023(07): 1515-1524 . ![]() | |
8. | 王双双,谢文强,延晓冬. CMIP6模式对中国气温日较差的模拟能力评估. 气候与环境研究. 2022(01): 79-93 . ![]() | |
9. | 宋帅峰,延晓冬. CMIP6全球气候模式对中国冬季寒潮频次模拟能力的评估. 气候与环境研究. 2022(01): 33-49 . ![]() | |
10. | 李晓蕾,王卫光,张淑林. 基于CMIP6多模式的长江流域未来降水变化趋势分析. 中国农村水利水电. 2022(03): 1-7+12 . ![]() | |
11. | 曹云,孙应龙,陈紫璇,延昊,钱拴. 2000—2020年黄河流域植被生态质量变化及其对极端气候的响应. 生态学报. 2022(11): 4524-4535 . ![]() | |
12. | 胡羽丰,汪吉,李振洪,彭建兵. 基于星载GNSS-R获取川藏交通廊道沿线地表土壤湿度. 地球科学. 2022(06): 2058-2068 . ![]() | |
13. | 晋程绣,姜超,张曦月. CMIP6模式对中国西南地区气温的模拟与预估. 中国农业气象. 2022(08): 597-611 . ![]() | |
14. | 刘引鸽,包江川,杨雨欣,黄雪. 渭河流域1850-2005年降水及蒸发量变化时空特征. 水土保持研究. 2022(06): 224-232 . ![]() | |
15. | 庞静漪,刘布春,刘园,邱美娟,王珂依. CMIP5全球气候模式统计降尺度数据对辽宁省极端气温模拟能力评估. 中国农业气象. 2021(05): 351-363 . ![]() | |
16. | 李雅培,朱睿,刘涛,常亚斌,尹振良. 基于BCC-CSM2-MR模式的疏勒河流域未来气温降水变化趋势分析. 高原气象. 2021(03): 535-546 . ![]() | |
17. | 蒋艳,贺新光,邓宇鹏,章新平. 长江流域近地表气温对地理位置和高程的依赖性分析. 长江流域资源与环境. 2021(06): 1329-1342 . ![]() | |
18. | 杜懿,王大刚,祝金鑫. 基于CMIP5的中国西北地区暖湿化演变研究. 水资源与水工程学报. 2021(05): 61-69+77 . ![]() |