• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 8
    Aug.  2020
    Turn off MathJax
    Article Contents
    Qin Yadong, Zhang Shizhen, Liu Han, Li Yong, 2020. Earthquake-Induced Soft-Sediment Deformation Structures in Middle Holocene of Xuru Co Area in Tibet and Its Geological Significance. Earth Science, 45(8): 2945-2956. doi: 10.3799/dqkx.2020.117
    Citation: Qin Yadong, Zhang Shizhen, Liu Han, Li Yong, 2020. Earthquake-Induced Soft-Sediment Deformation Structures in Middle Holocene of Xuru Co Area in Tibet and Its Geological Significance. Earth Science, 45(8): 2945-2956. doi: 10.3799/dqkx.2020.117

    Earthquake-Induced Soft-Sediment Deformation Structures in Middle Holocene of Xuru Co Area in Tibet and Its Geological Significance

    doi: 10.3799/dqkx.2020.117
    • Received Date: 2020-03-24
    • Publish Date: 2020-08-15
    • The lacustrine paleo-seismic study is an important supplement to the research of a complete paleo-seismic sequence. A large number of earthquake-induced soft-sediment deformation structures (seismites) were newly discovered in the Holocene lacustrine deposits in Xuru Co area by detailed field geological survey. Soft-sediment deformation markers mainly include liquefied vein,liquefied convolute,liquefied breccia,hydraulic structure,liqufied droplets and cusps,conglomerate mound,load structure and flance structure. The syn-seismic structure deformation markers were also developed including syn-seismic fault,seismic fissure,and syn-fold. Based on the empirical statistical relation between the earthquake magnitude and soft-sediment deformation markers,combining historical earthquake statistics with the range of liquefied particles,it is suggested that the maximum magnitude may exceed 7.5. The C14 and OSL dating results for samples suggest that the age of the paleoearthquake is around 7.5 ka. The work fills the gap of historical earthquakes in the area,and provides material for restoring the history and migration law of earthquakes in the NS-trending grabens of the Tibetan Plateau. A large amount of gravel liquefaction was found in seismite,which poses a new challenge to the investigation of sand liquefaction,which is dominated by sand and silt.

       

    • loading
    • Adamiec, G., Aitken, M.J., 1998. Dose-Rate Conversion Factors:Update. Ancient TL, 16(2):37-50.
      Atkinson, J. M., Heritage, J., 1984. Structures of Social Action. Cambridge University Press, Cambridge.
      Berra, F., Felletti, F., 2011. Syndepositional Tectonics Recorded by Soft-Sediment Deformation and Liquefaction Structures (Continental Lower Permian Sediments, Southern Alps, Northern Italy):Stratigraphic Significance. Sedimentary Geology, 235(3-4):249-263. https://doi.org/10.1016/j.sedgeo.2010.08.006
      Cao, S.H., Li, D.W., Yu, Z.Z., et al., 2009. Characteristics and Mechanism of the Dangra Yun Co and Xuru Co NS-Trending Graben in the Gangdese, Tibet. Earth Science, 34(6):914-920 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200906005
      Du, Y.S., 2011. Discussion about Studies of Earthquake Event Deposit in China. Journal of Palaeogeography, 13(6):581-590 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201106001
      Du, Y.S., Yu, W.C., 2017. Earthquake-Caused and Non-Earthquake-Caused Soft-Sediment Deformations. Journal of Palaeogeography, 19(1):65-72 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201701006
      Gong, Z., Li, H.B., Sun, Z.M., et al., 2013. Middle Jurassic Strike Slip Movement and Fault Scale of the Altyn Tagh Fault System:Evidence from the Soft Sediment Deformation. Acta Petrologica Sinica, 29(6):2233-2250 (in Chinese with English abstract).
      He, B., Zhu, L.D., Yang, W.G., et al., 2016. Discovery and Geological Significance of the Holocene Seismites in the Jinsha Site in Chengdu, Sichuan. Sedimentary Geology and Tethyan Geology, 36(1):62-69 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201601008
      Huang, Y., Hao, J.X., Deng, G.B., et al., 2011. Discovery and Significance of the Seismites in the Neogene Xiaolongtan Formation in Maguan, Yunnan. Sedimentary Geology and Tethyan Geology, 31(4):79-85 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201104012
      Jiang, H. C., Zhong, N., Li, Y. H., et al., 2016. Soft Sediment Deformation Structures in the Lixian Lacustrine Sediments, Eastern Tibetan Plateau and Implications for Postglacial Seismic Activity. Sedimentary Geology, 344:123-134. https://doi.org/10.1016/j.sedgeo.2016.06.011
      Karlin, R. E., Abella, S. E. B., 1996. A History of Pacific Northwest Earthquakes Recorded in Holocene Sediments from Lake Washington. Journal of Geophysical Research:Solid Earth, 101(B3):6137-6150. https://doi.org/10.1029/95jb01626
      Li, Y., Zhong, J.H., Shao, Z.F., et al., 2012. An Overview on the Classification and Genesis of Soft-Sediment Deformation Structure. Geological Review, 58(5):829-838 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201205004
      Liang, D.Y., Nie, Z.T., Song, Z.M., 1994. A Re-Study on Seismite and Seismo-Unconformity:Taking Western Sichuan and Western Yunnan as an Example. Earth Science, 19(6):845-850 (in Chinese with English abstract).
      Liu, H., Li, F.Q., Zhou, F., et al., 2018. Late Paleozoic Earthquake Events in the Nixiong Area and Its Geological Significance, Western Lhasa Block. Earth Science, 43(8):2767-2779 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808017
      Liu, Y., Xie, J.F., 1984.Vibration Induced Sand Liquefaction. Seismological Press, Beijing (in Chinese).
      Maloney, J. M., Noble, P. J., Driscoll, N. W., et al., 2013. Paleoseismic History of the Fallen Leaf Segment of the West Tahoe-Dollar Point Fault Reconstructed from Slide Deposits in the Lake Tahoe Basin, California-Nevada. Geosphere, 9(4):1065-1090. https://doi.org/10.1130/ges00877.1
      Montenat, C., Barrier, P., d'Estevou, P.O., et al., 2007. Seismites:An Attempt at Critical Analysis and Classification. Sedimentary Geology, 196(1-4):5-30. https://doi.org/10.1016/j.sedgeo.2006.08.004
      Moretti, M., Sabato, L., 2007. Recognition of Trigger Mechanisms for Soft-Sediment Deformation in the Pleistocene Lacustrine Deposits of the SantʻArcangelo Basin (Southern Italy):Seismic Shock vs. Overloading. Sedimentary Geology, 196(1-4):31-45. https://doi.org/10.1016/j.sedgeo.2006.05.012
      Obermeier, S. F., 1996. Use of Liquefaction-Induced Features for Paleoseismic Analysis:An Overview of How Seismic Liquefaction Features can be Distinguished from Other Features and How Their Regional Distribution and Properties of Source Sediment can be Used to Infer the Location and Strength of Holocene Paleo-Earthquakes. Engineering Geology, 44(1-4):1-76. https://doi.org/10.1016/s0013-7952(96)00040-3
      Owen, G., 1995. Soft-Sediment Deformation in Upper Proterozoic Torridonian Sandstones (Applecross Formation) at Torridon, Northwest Scotland. SEPM Journal of Sedimentary Research, 65A:495-504. https://doi.org/10.1306/d4268108-2b26-11d7-8648000102c1865d
      Owen, G., Moretti, M., Alfaro, P., 2011. Recognising Triggers for Soft-Sediment Deformation:Current Understanding and Future Directions. Sedimentary Geology, 235(3-4):133-140. https://doi.org/10.1016/j.sedgeo.2010.12.010
      Prescott, J. R., Hutton, J. T., 1994. Cosmic Ray Contributions to Dose Rates for Luminescence and ESR Dating:Large Depths and Long-Term Time Variations. Radiation Measurements, 23(2-3):497-500. https://doi.org/10.1016/1350-4487(94)90086-8
      Qiao, X. F., Guo, X. P., 2013. Early Jurassic Soft-Sediment Deformation Interpreted as Seismites in the Wuqia Pull-Apart Basin and the Strike-Slip Talas-Ferghana Fault, Xinjiang, China. Acta Geologica Sinica (English Edition), 87(3):730-737. https://doi.org/10.1111/1755-6724.12084
      Qiao, X.F., Guo, X.P., Li, H.B., et al., 2012. Soft-Sediment Deformation in the Late Triassic and the Indosinian Tectonic Movement in Longmenshan. Acta Geologica Sinica, 86(1):132-156 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201201003
      Qiao, X.F., Jiang, M., Li, H.B., et al., 2016. Soft-Sediment Deformation Structures and Their Implications for Tectonic Evolution from Mesozoic to Cenozoic in the Longmen Shan. Earth Science Frontiers, 23(6):80-106 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201606007
      Qiao, X.F., Li, H.B., 2009. Effect of Earthquake and Ancient Earthquake on Sediments. Journal of Palaeogeography, 11(6):593-610 (in Chinese with English abstract).
      Rana, N., Bhattacharya, F., Basavaiah, N., et al., 2013. Soft Sediment Deformation Structures and Their Implications for Late Quaternary Seismicity on the South Tibetan Detachment System, Central Himalaya (Uttarakhand), India. Tectonophysics, 592:165-174. https://doi.org/10.1016/j.tecto.2013.02.020
      Rodrı́guez-Pascua, M. A., Calvo, J. P., de Vicente, G., et al., 2000. Soft-Sediment Deformation Structures Interpreted as Seismites in Lacustrine Sediments of the Prebetic Zone, SE Spain, and Their Potential Use as Indicators of Earthquake Magnitudes during the Late Miocene. Sedimentary Geology, 135(1-4):117-135. https://doi.org/10.1016/s0037-0738(00)00067-1
      Rodrı́guez-Pascua, M.A., de Vicente, G., Calvo, J.P., et al., 2003. Similarities between Recent Seismic Activity and Paleoseismites during the Late Miocene in the External Betic Chain (Spain):Relationship by 'b' Value and the Fractal Dimension. Journal of Structural Geology, 25(5):749-763. https://doi.org/10.1016/s0191-8141(02)00078-0
      Scott, B., Price, S., 1988. Earthquake-Induced Structures in Young Sediments. Tectonophysics, 147(1-2):165-170. https://doi.org/10.1016/0040-1951(88)90154-0
      Sims, J. D., 1975. Determining Earthquake Recurrence Intervals from Deformational Structures in Young Lacustrine Sediments. Tectonophysics, 29(1-4):141-152. https://doi.org/10.1016/0040-1951(75)90139-0
      Tsuchida, H., Hayashi, S., 1972. Estimation of Liquefaction Potential of Sandy Soils. McGraw-Hill, New York.
      van Daele, M., Moernaut, J., Doom, L., et al., 2015. A Comparison of the Sedimentary Records of the 1960 and 2010 Great Chilean Earthquakes in 17 Lakes:Implications for Quantitative Lacustrine Palaeoseismology. Sedimentology, 62(5):1466-1496. https://doi.org/10.1111/sed.12193
      Wang, L.Z., Yao, Y.J., Lin, W.B., et al., 2018. Sediment Waves in the South of South China Sea:Soft Sediment Deformation and Its Triggering Mechanism. Earth Science, 43(10):3462-3470 (in Chinese with English abstract).
      Wang, P., Zhang, B., Qiu, W. L., et al., 2011. Soft-Sediment Deformation Structures from the Diexi Paleo-Dammed Lakes in the Upper Reaches of the Minjiang River, East Tibet. Journal of Asian Earth Sciences, 40(4):865-872. https://doi.org/10.1016/j.jseaes.2010.04.006
      Wang, W.M., Yuan, X.M., Chen, L.W., et al., 2011. Liquefaction Characteristic Analysis in Deyang Region in the Wenchuan Earthquake. Earthquake Engineering and Engineering Vibration, 31(2):145-154 (in Chinese with English abstract).
      Xu, Z.F., Liu, X.Y., Luo, X.C., et al., 2006. Basic Characteristic of the Neogene-Quaternary Graben in the Tangqung Co-Xuru Co Area, Gangdise, Qinghai-Tibet Plateau. Geological Bulletin of China, 25(7):822-826 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200607008
      Zhang, J.J., Ding, L, 2003. East-West Extension in Tibetan Plateau and Its Significance to Tectonic Evolution. Chinese Journal of Geology, 38(2):179-189 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200302005
      Zhong, N., Jiang, H.C., Liang, L.J., et al., 2017. Paleoearthquake Researches via Soft Sediment Deformation of Load, Ball-and-Pillow Structure:A Review. Geological Review, 63(3):719-738 (in Chinese with English abstract).
      Zhou, Y., Ji, Y.L., Wan, L., et al., 2011. Characteristics and Geologic Significance of Seismites in the Lower Cretaceous Laiyang Formation in Northeastern Jiaolai Basin in Shandong Province. Journal of Palaeogeography, 13(5):517-528 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201105006
      曹圣华, 李德威, 余忠珍, 等, 2009.西藏冈底斯当惹雍错-许如错南北向地堑的特征及成因.地球科学, 34(6):914-920. http://www.earth-science.net/article/id/1906
      杜远生, 2011.中国地震事件沉积研究的若干问题探讨.古地理学报, 13(6):581-590. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201106001
      杜远生, 余文超, 2017.地震和非地震引发的软沉积物变形.古地理学报, 19(1):65-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201701006
      龚正, 李海兵, 孙知明, 等, 2013.阿尔金断裂带中侏罗世走滑活动及其断裂规模的探讨:来自软沉积物变形的证据.岩石学报, 29(6):2233-2250.
      何碧, 朱利东, 杨文光, 等, 2016.成都金沙遗址区全新统震积岩的发现及其地质意义.沉积与特提斯地质, 36(1):62-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201601008
      黄勇, 郝家栩, 邓贵标, 等, 2011.云南马关新近系小龙潭组震积岩的发现及意义.沉积与特提斯地质, 31(4):79-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201104012
      李勇, 钟建华, 邵珠福, 等, 2012.软沉积变形构造的分类和形成机制研究.地质论评, 58(5):829-838. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201205004
      梁定益, 聂泽同, 宋志敏, 1994.再论震积岩及震积不整合:以川西, 滇西地区为例.地球科学, 19(6):845-850. http://www.earth-science.net/article/id/199
      刘函, 李奋其, 周放, 等, 2018.拉萨地块西段尼雄地区晚古生代地震事件及其地质意义.地球科学, 43(8):2767-2779. doi: 10.3799/dqkx.2018.167
      刘颖, 谢君斐, 1984.沙土震动液化.北京:地震出版社.
      乔秀夫, 郭宪璞, 李海兵, 等, 2012.龙门山晚三叠世软沉积物变形与印支期构造运动.地质学报, 86(1):132-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201201003
      乔秀夫, 姜枚, 李海兵, 等, 2016.龙门山中、新生界软沉积物变形及构造演化.地学前缘, 23(6):80-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201606007
      乔秀夫, 李海兵, 2009.沉积物的地震及古地震效应.古地理学报, 11(6):593-610. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200906002
      王龙樟, 姚永坚, 林卫兵, 等, 2018.南海南部沉积物波:软变形及其触发机制.地球科学, 43(10):3462-3470. doi: 10.3799/dqkx.2018.303
      王维铭, 袁晓铭, 陈龙伟, 等, 2011.汶川大地震中德阳地区液化特点分析.地震工程与工程振动, 31(2):145-154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzgcygczd201102021
      徐祖丰, 刘细元, 罗小川, 等, 2006.青藏高原冈底斯当穹错-许如错一带新近纪-第四纪地堑的基本特征.地质通报, 25(7):822-826. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200607008
      张进江, 丁林, 2003.青藏高原东西向伸展及其地质意义.地质科学, 38(2):179-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200302005
      钟宁, 蒋汉朝, 梁莲姬, 等, 2017.软沉积物变形中负载、球-枕构造的古地震研究综述.地质论评, 63(3):719-738.
      周勇, 纪友亮, 万璐, 等, 2011.山东省胶莱盆地东北部下白垩统莱阳组震积岩特征及地质意义.古地理学报, 13(5):517-528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201105006
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (1513) PDF downloads(82) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return