Citation: | Zhang Jiahui, Wang Huichu, Guo Jinghui, Tian Hui, Ren Yunwei, Chang Qingsong, Shi Jianrong, Xiang Zhenqun, 2020. Metamorphic Mafic Dykes from Tianzhen-Huai'an Area: Transformation Criteria of the Late Paleoproterozoic Collision to Extension in the North China Craton. Earth Science, 45(9): 3239-3257. doi: 10.3799/dqkx.2020.125 |
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X" target=="_blank"> https://doi.org/10.1016/S0009-2541(02)00195-X
|
Condie, K. C., 2016. The Supercontinent Cycle. Earth as an Evolving Planetary System. Elsevier, Amsterdam, 201-235. https://doi.org/10.1016/b978-0-12-803689-1.00007-9" target=="_blank"> https://doi.org/10.1016/b978-0-12-803689-1.00007-9
|
Dong, C. Y., Ma, M. Z., Liu, S. J., et al., 2012. Middle Paleoproterozoic Crustal Extensional Regime in the North China Craton: New Evidence from SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry of Meta-Gabbro in the Anshan-Gongchangling Area. Acta Petrologica Sinica, 28(9): 2785-2792 (in Chinese with English abstract).
|
Du, L. L., Yang, C. H., Ren, L. D., et al., 2012. The 2.2-2.1 Ga Magmatic Event and Its Tectonic Implication in the Lüliang Mountains, North China Craton. Acta Petrologica Sinica, 28(9): 2751-2769 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201209007
|
Du, L. L., Yang, C. H., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2 137 Ma Huangjinshan A-Type Granite Porphyry in the Wutai Area. Journal of Asian Earth Sciences, 72: 190-202. https://doi.org/10.1016/j.jseaes.2012.11.040" target=="_blank"> https://doi.org/10.1016/j.jseaes.2012.11.040
|
Duan, Z. Z., Wei, C. J., Li, Z., 2019. Metamorphic P-T Paths and Zircon U–Pb Ages of Paleoproterozoic Metabasic Dykes in Eastern Hebei and Northern Liaoning: Implications for the Tectonic Evolution of the North China Craton. Precambrian Research, 326: 124-141. https://doi.org/10.1016/j.precamres.2017.11.001" target=="_blank"> https://doi.org/10.1016/j.precamres.2017.11.001
|
Ernst, R. E., Bleeker, W., Sö derlund, U., et al., 2013. Large Igneous Provinces and Supercontinents: Toward Completing the Plate Tectonic Revolution. Lithos, 174: 1-14. https://doi.org/10.1016/j.lithos.2013.02.017" target=="_blank"> https://doi.org/10.1016/j.lithos.2013.02.017
|
Ernst, R. E., Grosfils, E. B., Mège, D., 2001. Giant Dike Swarms: Earth, Venus, and Mars.Annual Review of Earth and Planetary Sciences, 29(1): 489-534. https://doi.org/10.1146/annurev.earth.29.1.489" target=="_blank"> https://doi.org/10.1146/annurev.earth.29.1.489
|
Feng, J. P., Ouyang, Z. J., Ma, H. Y., et al., 2020. U-Pb Chronology, Geochemical Characteristics and Significance of the Taojiayao Basic Dike Swarms in the Zhongtiao Mountain, Southeastern Margin of North China Craton. Acta Geologica Sinica, 94(2): 573-586 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb202002014
|
Geng, J. Z., Li, H. K., Zhang, J., et al., 2011. Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201110004
|
Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., et al., 2003. Fractional Crystallization and Mantle-Melting Controls on Calc-Alkaline Differentiation Trends. Contributions to Mineralogy and Petrology, 145(5): 515-533. https://doi.org/10.1007/s00410-003-0448-z" target=="_blank"> https://doi.org/10.1007/s00410-003-0448-z
|
Guo, J. H., O'Brien, P. J., Zhai, M. G., 2002. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 20(8): 741-756. https://doi.org/10.1046/j.1525-1314.2002.00401.x" target=="_blank"> https://doi.org/10.1046/j.1525-1314.2002.00401.x
|
Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93-1.92 Ga Caused by Gabbronorite Intrusions: Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222-223: 124-142. https://doi.org/10.1016/j.precamres.2011.07.020" target=="_blank"> https://doi.org/10.1016/j.precamres.2011.07.020
|
Guo, J. H., Sun, M., Chen, F. K., et al., 2005. Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision. Journal of Asian Earth Sciences, 24(5): 629-642. https://doi.org/10.1016/j.jseaes.2004.01.017" target=="_blank"> https://doi.org/10.1016/j.jseaes.2004.01.017
|
Heaman, L. M., 1997. Global Mafic Magmatism at 2.45 Ga: Remnants of an Ancient Large Igneous Province?. Geology, 25(4): 299. https://doi.org/10.1130/0091-7613(1997)0250299:gmmagr>2.3.co;2 doi: 10.1130/0091-7613(1997)0250299:gmmagr>2.3.co;2
|
Hou, G. T., Santosh, M., Qian, X. L., et al., 2008. Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from Radiating Mafic Dyke Swarms. Gondwana Research, 14(3): 395-409. https://doi.org/10.1016/j.gr.2008.01.010" target=="_blank"> https://doi.org/10.1016/j.gr.2008.01.010
|
Jensen, L. S., 1976. A New Cation Plot for Classifying Subalkalic Volcanic Rocks. Ontario Geological Survey, Toronto.
|
Jiao, S. J., Fitzsimons, I. C. W., Guo, J. H, 2017. Paleoproterozoic UHT Metamorphism in the Daqingshan Terrane, North China Craton: New Constraints from Phase Equilibria Modeling and SIMS U-Pb Zircon Dating. Precambrian Research, 303: 208-227. https://doi.org/10.1016/j.precamres.2017.03.024" target=="_blank"> https://doi.org/10.1016/j.precamres.2017.03.024
|
Kerrich, R., Polat, A., Wyman, D., et al., 1999. Trace Element Systematics of Mg-, to Fe-tholeiitic Basalt Suites of the Superior Province: Implications for Archean Mantle Reservoirs and Greenstone Belt Genesis. Lithos, 46(1): 163-187. https://doi.org/10.1016/S0024-4937(98)00059-0" target=="_blank"> https://doi.org/10.1016/S0024-4937(98)00059-0
|
Kröner, A., Wilde, S. A., Zhao, G. C., et al., 2006. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China: Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 146(1-2): 45-67. https://doi.org/10.1016/j.precamres.2006.01.008" target=="_blank"> https://doi.org/10.1016/j.precamres.2006.01.008
|
Li, X. W., Wei, C. J., 2018. Ultrahigh-Temperature Metamorphism in the Tuguiwula Area, Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 36(4): 489-509. https://doi.org/10.1111/jmg.12301" target=="_blank"> https://doi.org/10.1111/jmg.12301
|
Liao, Y., Wei, C. J., 2019. Ultrahigh-Temperature Mafic Granulite in the Huai'an Complex, North China Craton: Evidence from Phase Equilibria Modelling and Amphibole Thermometers. Gondwana Research, 76: 62-76. https://doi.org/10.1016/j.gr.2019.05.010" target=="_blank"> https://doi.org/10.1016/j.gr.2019.05.010
|
Liu, F., Guo, J. H., Peng, P., et al., 2012. Zircon U-Pb Ages and Geochemistry of the Huai'an TTG Gneisses Terrane: Petrogenesis and Implications for ~2.5 Ga Crustal Growth in the North China Craton. Precambrian Research, 212-213: 225-244. https://doi.org/10.1016/j.precamres.2012.06.006" target=="_blank"> https://doi.org/10.1016/j.precamres.2012.06.006
|
Liu, H., Li, X. P., Kong, F. M., et al., 2019. Ultra-High Temperature Overprinting of High Pressure Pelitic Granulites in the Huai'an Complex, North China Craton: Evidence from Thermodynamic Modeling and Isotope Geochronology. Gondwana Research, 72: 15-33. https://doi.org/10.1016/j.gr.2019.02.003" target=="_blank"> https://doi.org/10.1016/j.gr.2019.02.003
|
Liu, J., Zhang, J., Liu, Z. H., et al., 2018. Geochemical and Geochronological Study on the Paleoproterozoic Rock Assemblage of the Xiuyan Region: New Constraints on an Integrated Rift-and-Collision Tectonic Process Involving the Evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 310: 179-197. https://doi.org/10.1016/j.precamres.2018.03.005" target=="_blank"> https://doi.org/10.1016/j.precamres.2018.03.005
|
Liu, P. H., Liu, F. L., Cai, J., et al., 2013a. Geochronological and Geochemical Study of the Lijiazi Mafic Granulites from the Daqingshan-Wulashan Metamorphic Complex, the Central Khondalite Belt in the North China Craton. Acta Petrologica Sinica, 29(2): 462-484 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201302009
|
Liu, P. H., Liu, F. L., Wang, F., et al., 2013b. Petrological and Geochronological Preliminary Study of the Xiliu ~2.1 Ga Meta-Gabbro from the Jiaobei Terrane, the Southern Segment of the Jiao-Liao-Ji Belt in the North China Craton. Acta Petrologica Sinica, 29(7): 2371-2390 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201307009.htm
|
Ma, M. Z., Wan, Y. S., Santosh, M., et al., 2012. Decoding Multiple Tectonothermal Events in Zircons from Single Rock Samples: SHRIMP Zircon U–Pb Data from the Late Neoarchean Rocks of Daqingshan, North China Craton. Gondwana Research, 22(3): 810-827. https://doi.org/10.1016/j.gr.2012.02.020" target=="_blank"> https://doi.org/10.1016/j.gr.2012.02.020
|
Meng, E., Liu, F. L., Liu, P. H., et al., 2014. Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China: Evidence from Zircon U–Pb Dating and in Situ Lu–Hf Isotopes, and Whole-Rock Geochemistry. Precambrian Research, 247: 92-109. https://doi.org/10.1016/j.precamres.2014.03.017" target=="_blank"> https://doi.org/10.1016/j.precamres.2014.03.017
|
Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016" target=="_blank"> https://doi.org/10.1016/j.lithos.2007.06.016
|
Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5): 649-675. https://doi.org/10.1007/s11430-014-5026-x" target=="_blank"> https://doi.org/10.1007/s11430-014-5026-x
|
Peng, P., Guo, J. H., Zhai, M. G., et al., 2010. Paleoproterozoic Gabbronoritic and Granitic Magmatism in the Northern Margin of the North China Craton: Evidence of Crust-Mantle Interaction. Precambrian Research, 183(3): 635-659. https://doi.org/10.1016/j.precamres.2010.08.015" target=="_blank"> https://doi.org/10.1016/j.precamres.2010.08.015
|
Peng, P., Guo, J. H., Zhai, M. G., et al., 2012. Genesis of the Hengling Magmatic Belt in the North China Craton: Implications for Paleoproterozoic Tectonics. Lithos, 148: 27-44. https://doi.org/10.1016/j.lithos.2012.05.021" target=="_blank"> https://doi.org/10.1016/j.lithos.2012.05.021
|
Peng, P., Wang, X. P., Windley, B. F., et al., 2014. Spatial Distribution of ~1 950-1 800 Ma Metamorphic Events in the North China Craton: Implications for Tectonic Subdivision of the Craton. Lithos, 202-203: 250-266. https://doi.org/10.1016/j.lithos.2014.05.033" target=="_blank"> https://doi.org/10.1016/j.lithos.2014.05.033
|
Peng, P., Yang, S. Y., Su, X. D., et al., 2017. Petrogenesis of the 2 090 Ma Zanhuang Ring and Sill Complexes in North China: A Bimodal Magmatism Related to Intra-Continental Process. Precambrian Research, 303: 153-170. https://doi.org/10.1016/j.precamres.2017.03.015" target=="_blank"> https://doi.org/10.1016/j.precamres.2017.03.015
|
Peng, P., Zhai, M. G., Ernst, R. E., et al., 2008. A 1.78 Ga Large Igneous Province in the North China Craton: The Xiong'er Volcanic Province and the North China Dyke Swarm. Lithos, 101(3-4): 260-280. https://doi.org/10.1016/j.lithos.2007.07.006" target=="_blank"> https://doi.org/10.1016/j.lithos.2007.07.006
|
Peng, P., Zhai, M. G., Zhang, H. F., et al., 2005. Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes. International Geology Review, 47(5): 492-508. https://doi.org/10.2747/0020-6814.47.5.492" target=="_blank"> https://doi.org/10.2747/0020-6814.47.5.492
|
Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3): 231-254. https://doi.org/10.1016/S0009-2541(01)00363-1" target=="_blank"> https://doi.org/10.1016/S0009-2541(01)00363-1
|
Qian, J. H., Yin, C. Q., Wei, C. J., et al., 2019. Two Phases of Paleoproterozoic Metamorphism in the Zhujiafang Ductile Shear Zone of the Hengshan Complex: Insights into the Tectonic Evolution of the North China Craton. Lithos, 330-331: 35-54. https://doi.org/10.1016/j.lithos.2019.02.001" target=="_blank"> https://doi.org/10.1016/j.lithos.2019.02.001
|
Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Group, London.
|
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust. Elsevier-Pergamon, Oxford.
|
Rudnick, R. L., McLennan, S. M., Taylor, S. R., 1985. Large Ion Lithophile Elements in Rocks from High-Pressure Granulite Facies Terrains. Geochimica et Cosmochimica Acta, 49(7): 1645-1655. https://doi.org/10.1016/0016-7037(85)90268-6" target=="_blank"> https://doi.org/10.1016/0016-7037(85)90268-6
|
Santosh, M., Liu, S. W., Tsunogae, T., et al., 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222: 77-106. https://doi.org/10.1016/j.precamres.2011.05.003" target=="_blank"> https://doi.org/10.1016/j.precamres.2011.05.003
|
Santosh, M., Tsunogae, T., Li, J. H., et al., 2007. Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263-285. https://doi.org/10.1016/j.gr.2006.10.009" target=="_blank"> https://doi.org/10.1016/j.gr.2006.10.009
|
Shen, Q. H., Geng, Y. S., Song, H. X., 2018. Progress on Metamorphic Petrology and Metamorphic Geology of China in the Last nearly 70 Years. Earth Science, 43(1): 1-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801001
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19" target=="_blank"> https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Tian, H., Zhang, J. H., Wang, H. C., et al., 2019. Formation Age and Tectonic Setting of Iron-Bearing Formation in Huai'an Complex, North China Craton. Earth Science, 44(1):37-55 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901004
|
Wan, Y. S., Xu, Z. Y., Dong, C. Y., et al., 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton: SHRIMP Zircon U–Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 224: 71-93. https://doi.org/10.1016/j.precamres.2012.09.014" target=="_blank"> https://doi.org/10.1016/j.precamres.2012.09.014
|
Wang, B., Tian, W., Wei, C. J., et al., 2019. Ultrahigh Metamorphic Temperatures over 1 050 ℃ Recorded by Fe-Ti Oxides and Implications for Paleoproterozoic Magma-Induced Crustal Thermal Perturbation in Jining Area, North China Craton. Lithos, 348/349: 105180. https://doi.org/10.1016/j.lithos.2019.105180" target=="_blank"> https://doi.org/10.1016/j.lithos.2019.105180
|
Wang, H. C., Yu, H. F., Miao, P. S., et al., 2011. Precambrian Research in China: New Advances and Perspectives. Geological Survey and Research, 34(4): 241-252, 312 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=QHWJ201104002&dbcode=CJFD&year=2011&dflag=pdfdown
|
Wang, X. C., Wilde, S. A., Xu, B., et al., 2016b. Origin of Arc-Like Continental Basalts: Implications for Deep-Earth Fluid Cycling and Tectonic Discrimination.Lithos, 261: 5-45. https://doi.org/10.1016/j.lithos.2015.12.014" target=="_blank"> https://doi.org/10.1016/j.lithos.2015.12.014
|
Wang, X. P., Peng, P., Wang, C., et al., 2016a. Petrogenesis of the 2115 Ma Haicheng Mafic Sills from the Eastern North China Craton: Implications for an Intra-Continental Rifting. Gondwana Research, 39: 347-364. https://doi.org/10.1016/j.gr.2016.01.009" target=="_blank"> https://doi.org/10.1016/j.gr.2016.01.009
|
Wang, X., Zhu, W. B., Ge, R. F., et al., 2014. Two Episodes of Paleoproterozoic Metamorphosed Mafic Dykes in the Lvliang Complex: Implications for the Evolution of the Trans-North China Orogen. Precambrian Research, 243: 133-148. https://doi.org/10.1016/j.precamres.2013.12.014" target=="_blank"> https://doi.org/10.1016/j.precamres.2013.12.014
|
Wang, Y. J., Zhao, G. C., Fan, W. M., et al., 2007. LA-ICP-MS U-Pb Zircon Geochronology and Geochemistry of Paleoproterozoic Mafic Dykes from Western Shandong Province: Implications for Back-Arc Basin Magmatism in the Eastern Block, North China Craton. Precambrian Research, 154(1): 107-124. https://doi.org/10.1016/j.precamres.2006.12.010" target=="_blank"> https://doi.org/10.1016/j.precamres.2006.12.010
|
Wei, C. J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1): 24-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801002
|
Wei, C. J., Qian, J. H., Zhou, X. W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485-497. https://doi.org/10.1016/j.gsf.2014.02.008" target=="_blank"> https://doi.org/10.1016/j.gsf.2014.02.008
|
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2" target=="_blank"> https://doi.org/10.1016/0009-2541(77)90057-2
|
Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821x(80)90116-8" target=="_blank"> https://doi.org/10.1016/0012-821x(80)90116-8
|
Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001
|
Wu, J. L., Zhang, H. F., Zhai, M. G., et al., 2016. Discovery of Pelitic High-Pressure Granulite from Manjinggou of the Huai'an Complex, North China Craton: Metamorphic P-T Evolution and Geological Implications. Precambrian Research, 278: 323-336. https://doi.org/10.1016/j.precamres.2016.03.001" target=="_blank"> https://doi.org/10.1016/j.precamres.2016.03.001
|
Yang, C. H., Du, L. L., Geng, Y. S., et al., 2017. Paleoproterozoic Metamafic Dyke Swarms in the Eastern Hebei Massif, the Eastern North China Craton: ~2.1 Ga Extension and ~1.8 Ga Metamorphism. Acta Petrologica Sinica, 33(9): 2827-2849 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201709012.htm
|
Yang, L. H., Hou, G. T., Liu, S. W., et al., 2019. 2.09 Ga Mafic Dykes from Western Shandong, Eastern Block of North China Craton, and Their Tectonic Implications.Precambrian Research, 325: 39-54. https://doi.org/10.1016/j.precamres.2019.02.007" target=="_blank"> https://doi.org/10.1016/j.precamres.2019.02.007
|
Yu, C., 2019. Geochronological and Geochemical Characteristics of the Tonalite and Its Geological Implication in the Qinyuan Area, Northern Liaoning Province. Geological Survey and Research, 42(1): 18-29 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201901003
|
Yuan, L. L., Zhang, X. H., Xue, F. H., et al., 2015. Two Episodes of Paleoproterozoic Mafic Intrusions from Liaoning Province, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 264: 119-139. https://doi.org/10.1016/j.precamres.2015.04.017" target=="_blank"> https://doi.org/10.1016/j.precamres.2015.04.017
|
Zhai, M. G., 2009. Two Kinds of Granulites (HT-HP and HT-UHT) in North China Craton: Their Genetic Relation and Geotectonic Implications. Acta Petrologica Sinica, 25(8):1753-1771 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200908005.htm
|
Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 54(8): 1110-1120. https://doi.org/10.1007/s11430-011-4250-x" target=="_blank"> https://doi.org/10.1007/s11430-011-4250-x
|
Zhai, M. G., Hu, B., Peng, P., et al., 2014. Meso-Neoproterozoic Magmatic Events and Multi-Stage Rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201401010
|
Zhai, M. G., Hu, B., Zhao, T. P., et al., 2015. Late Paleoproterozoic-Neoproterozoic Multi-Rifting Events in the North China Craton and Their Geological Significance: A Study Advance and Review. Tectonophysics, 662: 153-166. https://doi.org/10.1016/j.tecto.2015.01.019" target=="_blank"> https://doi.org/10.1016/j.tecto.2015.01.019
|
Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005" target=="_blank"> https://doi.org/10.1016/j.gr.2011.02.005
|
Zhang, H. F., Wang, H. Z., Santosh, M., et al., 2016. Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC): Implications for Timing of Cratonization and Crustal Evolution History. Precambrian Research, 272: 244-263. https://doi.org/10.1016/j.precamres.2015.11.004" target=="_blank"> https://doi.org/10.1016/j.precamres.2015.11.004
|
Zhang, J. H., Tian, H., Wang, H. C., et al., 2019a. Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton: Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1): 1-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201901001.htm
|
Zhang, J. H., Wang, H. C., Tian, H., et al., 2019b. Geochemistry of the Neoarchean and Paleoproterozoic Al-Rich Metamorphic Supracrustal Rocks in the Huai'an Complex, North China Craton and Its Tectonic Significances. Acta Geologica Sinica, 93(7): 1618-1638 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201907006
|
Zhang, J. H., Wang, H. C., Tian, H., et al., 2019c. Petrogenesis of the MORB Type High-Pressure Mafic Granulite from the Huai'an Complex in North China Craton and Its Tectonic Implications. Acta Petrologica Sinica, 35(11): 3506-3528 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.16
|
Zhang, S. H., Zhang, R. Y., Zhou, J. Y., 2019. LA-ICP-MS Zircon U-Pb Age, Geochemical Characteristics of the Paleoproterozoic Metamorphosed Mafic Dykes in Zhongtiao Mountains, Shanxi Province, and Their Geological Implications. Geological Review, 65(6): 1350-1362 (inChinesewithEnglishabstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201906005
|
Zhang, S. H., Zhao, Y., Santosh, M., 2012. Mid-Mesoproterozoic Bimodal Magmatic Rocks in the Northern North China Craton: Implications for Magmatism Related to Breakup of the Columbia Supercontinent. Precambrian Research, 222/223: 339-367. https://doi.org/10.1016/j.precamres.2011.06.003" target=="_blank"> https://doi.org/10.1016/j.precamres.2011.06.003
|
Zhang, Y. Y., Yuan, C., Sun, M., et al., 2020. Two Late Carboniferous Belts of Nb-Enriched Mafic Magmatism in the Eastern Tianshan: Heterogeneous Mantle Sources and Geodynamic Implications. GSA Bulletin, Online. https://doi.org/10.1130/b35366.1" target=="_blank"> https://doi.org/10.1130/b35366.1
|
Zhao, G. C., 2009. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252026187.html
|
Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016" target=="_blank"> https://doi.org/10.1016/j.precamres.2012.09.016
|
Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2001. High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton: Petrology and Tectonic Implications. Journal of Petrology, 42(6): 1141-1170. https://doi.org/10.1093/petrology/42.6.1141" target=="_blank"> https://doi.org/10.1093/petrology/42.6.1141
|
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002" target=="_blank"> https://doi.org/10.1016/j.precamres.2004.10.002
|
Zhao, G. C., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex: Constraints on Late Archean to Paleoproterozoic Magmatic and Metamorphic Events in the Trans-North China Orogen. American Journal of Science, 308(3): 270-303. https://doi.org/10.2475/03.2008.04" target=="_blank"> https://doi.org/10.2475/03.2008.04
|
Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016" target=="_blank"> https://doi.org/10.1016/j.gr.2012.08.016
|
董春艳, 马铭株, 刘守偈, 等, 2012.华北克拉通古元古代中期伸展体制新证据:鞍山-弓长岭地区变质辉长岩的锆石SHRIMP U-Pb定年和全岩地球化学.岩石学报, 28(9): 2785-2792. http://d.wanfangdata.com.cn/Periodical/ysxb98201209009
|
杜利林, 杨崇辉, 任留东, 等, 2012.吕梁地区2.2~2.1 Ga岩浆事件及其构造意义.岩石学报, 28(9): 2751-2769. http://qikan.cqvip.com/Qikan/Article/Detail?id=43428508
|
冯娟萍, 欧阳征健, 马海勇, 等, 2020.华北克拉通东南缘中条山陶家窑基性岩墙群U-Pb定年、地球化学特征及其构造环境.地质学报, 94(2): 573-586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb202002014
|
耿建珍, 李怀坤, 张健, 等, 2011.锆石Hf同位素组成的LA-MC-ICP-MS测定.地质通报, 30(10): 1508-1513. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201110004
|
刘平华, 刘福来, 蔡佳, 等, 2013a.华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究.岩石学报, 29(2): 462-484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201302009
|
刘平华, 刘福来, 王舫, 等, 2013b.胶北西留古元古代~2.1 Ga变辉长岩岩石学与年代学初步研究.岩石学报, 29(7): 2371-2390. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201307009.htm
|
沈其韩, 耿元生, 宋会侠, 2018.近70年中国变质岩石学-变质地质学的研究进展.地球科学, 43(1): 1-23. doi: 10.3799/dqkx.2018.001
|
田辉, 张家辉, 王惠初, 等, 2019.怀安杂岩中含BIF岩石组合的形成时代及产出构造背景.地球科学, 44(1): 37-51. doi: 10.3799/dqkx.2018.301
|
王惠初, 于海峰, 苗培森, 等, 2011.前寒武纪地质学研究进展与前景.地质调查与研究, 34(4): 241-252, 312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201104001
|
魏春景, 2018.华北中部造山带五台-恒山地区古元古代变质作用与构造演化.地球科学, 43(1): 24-43. doi: 10.3799/dqkx.2018.002
|
吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2): 185-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001
|
杨崇辉, 杜利林, 耿元生, 等, 2017.冀东古元古代基性岩墙群的年龄及地球化学: ~2.1 Ga伸展及~1.8 Ga变质.岩石学报, 33(9): 2827-2849. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709012.htm
|
余超, 2019.辽北清原地区英云闪长岩年代学、地球化学特征及其地质意义.地质调查与研究, 42(1): 18-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201901003
|
翟明国, 2009.华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题.岩石学报, 25(8): 1753-1771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908003
|
翟明国, 胡波, 彭澎, 等, 2014.华北中:新元古代的岩浆作用与多期裂谷事件.地学前缘, 21(1): 100-119. http://www.cqvip.com/QK/98600X/201401/50137027.html
|
张家辉, 田辉, 王惠初, 等, 2019a.华北克拉通怀安杂岩中早前寒武纪两期变质表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1): 1-22. doi: 10.3799/dqkx.2018.259
|
张家辉, 王惠初, 田辉, 等, 2019b.华北克拉通怀安杂岩新太古代和古元古代富铝变质表壳岩的地球化学特征及构造意义.地质学报, 93(7): 1618-1638. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201907006
|
张家辉, 王惠初, 田辉, 等, 2019c.华北克拉通怀安杂岩中"MORB"型高压基性麻粒岩的成因及其构造意义.岩石学报, 35(11): 3506-3528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201911016
|
张少华, 张瑞英, 周金昱, 2019.中条山地区古元古代变基性岩墙的地球化学特征、LA-ICP-MS U-Pb年龄及其地质意义.地质论评, 65(6): 1350-1362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201906005
|
赵国春, 2009.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报, 25(8): 1772-1792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908004
|
![]() |
![]() |
1. | 王金芳,宋宇桐,李康硕,陆泽芊,刘辰雨,李英杰,陈公正. 冀北古元古代东瓦窑杂岩体的发现及其对华北克拉通伸展事件的制约. 地质通报. 2024(01): 46-60 . ![]() | |
2. | 程小鑫,吴鸿翔,孙大亥,黄伟康,陈汉林,林秀斌,朱孔阳,章凤奇. 塔里木盆地西北缘二叠纪基性岩浆侵入事件及其构造意义. 岩石学报. 2022(03): 743-772 . ![]() | |
3. | 王惠初,张家辉,任云伟,施建荣,相振群,常青松,王智. 华北克拉通中北部麻粒岩带基础地质调查进展及相关问题讨论. 华北地质. 2022(01): 18-41 . ![]() | |
4. | 常青松,施建荣,张家辉,王惠初,任云伟. 集宁地区古元古代基性麻粒岩两期变质事件的地质意义. 华北地质. 2022(02): 68-75 . ![]() | |
5. | 王惠初,康健丽,任云伟,肖志斌,相振群,王智. 胶-辽-吉带构造属性与演化阶段新划分:胶北变质辉长岩的启示. 岩石学报. 2021(01): 185-210 . ![]() | |
6. | 张家辉,王惠初,相振群,杨济远,田辉,任云伟,康辰凯. 晋冀交界怀安镇幅1:50000地质图数据库. 中国地质. 2021(S1): 69-78 . ![]() | |
7. | 张贵山,彭仁,温汉捷,赵志琦,张磊,邱红信,孟乾坤. 闽西南E-MORB型基性岩墙成因:来自地球化学、锆石U-Pb年代学及Sr-Nd同位素证据. 地球科学. 2021(12): 4230-4246 . ![]() |