• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 4
    Apr.  2021
    Turn off MathJax
    Article Contents
    Zhao Shufeng, Liu Hui, Zhao Lei, Chen Rong, Ma Jie, Liu Shan, 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131
    Citation: Zhao Shufeng, Liu Hui, Zhao Lei, Chen Rong, Ma Jie, Liu Shan, 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131

    Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation

    doi: 10.3799/dqkx.2020.131
    • Received Date: 2020-01-06
    • Publish Date: 2021-04-15
    • In redox fluctuation areas such as groundwater level fluctuation zone,surface water-groundwater interaction zone,O2 reacts with Fe(Ⅱ) to produce reactive oxygen species (ROSs),such as ·OH,·O2-,H2O2,etc. These ROSs are of biological toxicity and may have impact on the survival of microorganisms,and different functional microorganisms may respond differently to ROSs produced by Fe(Ⅱ) chemical oxidation. To validate this scientific hypothesis,a Fe (Ⅱ) oxidizing bacteria Pseudogulbenkiania sp. strain 2002 (strain 2002),two ammonia oxidation bacteria Rhodococcus sp. (A1) and Arthrobacter oxydans (A2) were selected as model strains,and contrasted with the iron reducing bacteria Shewanella oneidensis strain MR-1 (MR-1).The numbers of microorganisms,changes of cell structures,and the contribution of ROS were studied. The results show that different functional microorganisms respond differently to Fe(Ⅱ) chemical oxidation. After oxidation of 0.2 mmol/L Fe(Ⅱ) for 60 min,the MR-1 numbers decreased by 1.61 orders of magnitude,A1 and A2 decreased by 0.74 and 1.37 orders of magnitude,respectively,while the survival of strain 2002 was virtually unaffected by Fe (Ⅱ) oxidation. It was observed through transmission electron microscope that the outer membranes of MR-1,A1 and A2 bacteria cells were damaged to varying degrees,while strain 2002 was intact. The results of quenching test show that ROS produced in solution and in the cell caused death of functional microorganisms,but different microorganisms had different response mechanisms to ROS due to their adsorption ability to Fe(Ⅱ) and their resistance to ROS. The results of this study are of great significance for interpreting the microbial community evolution in the redox fluctuation region and the biogeochemical processes in the Great Oxygen Explosion in the history of the earth.

       

    • loading
    • Chen, R., Liu, H., Tong, M., et al., 2018. Impact of Fe(Ⅱ) Oxidation in the Presence of Iron-Reducing Bacteria on Subsequent Fe(Ⅲ) Bio-Reduction. The Science of the Total Environment, 639: 1007-1014. https://doi.org/10.1016/j.scitotenv.2018.05.241
      Chen, R., Liu, H., Zhang, P., et al., 2019. Attenuation of Fe (Ⅲ)-Reducing Bacteria during Table Fluctuation of Groundwater Containing Fe2+. Science of the Total Environment, 694: 133660. https://doi.org/10.1016/j.scitotenv.2019.133660
      Cornelis, P., Wei, Q., Andrews, S. C., et al., 2011. Iron Homeostasis and Management of Oxidative Stress Response in Bacteria. Metallomics, 3(6): 540-549. https://doi.org/10.1039/c1mt00022e
      Emerson, D., De Vet, W., 2015. The Role of FeOB in Engineered Water Ecosystems: A Review. Journal American Water Works Association, 107(1): E47-E57. https://doi.org/10.5942/jawwa.2015.107.0004
      Grannas, A. M., Martin, C. B., Chin, Y. P., et al., 2006. Hydroxyl Radical Production from Irradiated Arctic Dissolved Organic Matter. Biogeochemistry, 78(1): 51-66. https://doi.org/10.1007/s10533-005-2342-4
      He, J.Z., Zhang, L.M., 2009. Advances in Ammonia-Oxidizing Microorganisms and Global Nitrogen Cycle. Acta Ecologica Sinica, 29(1): 406-415(in Chinese with English abstract). http://www.oalib.com/paper/1401250
      Heffron, J., McDermid, B., Mayer, B. K., 2019. Bacteriophage Inactivation as a Function of Ferrous Iron Oxidation. Environmental Science: Water Research & Technology, 5(7): 1309-1317. https://doi.org/10.1039/C9EW00190E
      Hu, M., Li, F.B., 2014. Soil Microbe Mediated Iron Cycling and Its Environmental Implication. Acta Pedologica Sinica, 51(4): 683-698(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/trxb201404002
      Imlay, J.A., 2003. Pathways of Oxidative Damage. Annual Review of Microbiology, 57(1): 395-418. https://doi.org/10.1146/annurev.micro.57.030502.090938
      Joo, S. H., Feitz, A. J., Sedlak, D. L., et al., 2005. Quantification of the Oxidizing Capacity of Nanoparticulate Zero-Valent Iron. Environmental Science & Technology, 39(5): 1263-1268. https://doi.org/10.1021/es048983d
      Keenan, C. R., Sedlak, D. L., 2008. Factors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen. Environmental Science & Technology, 42(4): 1262-1267. https://doi.org/10.1021/es7025664
      Kim, J. Y., Park, H. J., Lee, C., et al., 2010. Inactivation of Escherichia coli by Nanoparticulate Zerovalent Iron and Ferrous Ion. Applied and Environmental Microbiology, 76(22): 7668-7670. https://doi.org/10.1128/aem.01009-10
      Lee, C., Kim, J. Y., Lee, W. I., et al., 2008. Bactericidal Effect of Zero-Valent Iron Nanoparticles on Escherichia coli. Environmental Science & Technology, 42(13): 4927-4933. https://doi.org/10.1021/es800408u
      Liu, G.F., Zhu, J.Q., Yu, H.L., et al., 2018. Review on Electron-Shuttle-Mediated Microbial Reduction of Iron Oxides Minerals. Earth Science, 43(Suppl. 1): 157-170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1016.htm
      Lyons, T.W., Reinhard, C.T., Planavsky, N.J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506(7488): 307-315. https://doi.org/10.1038/nature13068
      Ma, S.C., Tong, M., Yuan, S. H., et al., 2019. Responses of the Microbial Community Structure in Fe(Ⅱ)-Bearing Sediments to Oxygenation: The Role of Reactive Oxygen Species. ACS Earth and Space Chemistry, 3(5): 738-747. https://doi.org/10.1021/acsearthspacechem.8b00189
      Melton, E.D., Swanner, E.D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi.org/10.1038/nrmicro3347
      Wang, R., Zheng, P., Zhang, M., et al., 2015. Nitrate-Dependent Anaerobic Ferrous/Iron Oxidation Microorganism: Review on Its Species, Distribution and Characteristics. Microbiology, 42(12): 2448-2456(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSWT201512018.htm
      Weber, K.A., Achenbach, L.A., Coates, J.D., 2006. Microorganisms Pumping Iron: Anaerobic Microbial Iron Oxidation and Reduction. Nature Reviews Microbiology, 4(10): 752-764. https://doi.org/10.1038/nrmicro1490
      Xie, S.C., Yang, H., Luo, G.M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 3-22(in Chinese). doi: 10.1360/csb2012-57-1-3
      Zhang, P., Yuan, S.H., 2017. Production of Hydroxyl Radicals from Abiotic Oxidation of Pyrite by Oxygen under Circumneutral Conditions in the Presence of Low-Molecular-Weight Organic Acids. Geochimica et Cosmochimica Acta, 218: 153-166. https://doi.org/10.1016/j.gca.2017.08.032
      Zhang, X., Chen, T.H., Wang, J., et al., 2018. Influence of Iron Oxides on Methanogenic Process of Organic Matter and Related Mechanism. Earth Science, 43(Suppl. 1): 136-144(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_earth-science_thesis/0201272213930.html
      Zhao, L., 2013. Influence of Elodea Nuttallii-Nitrogen Cycling Bacteria on Nitrogen Cycling of Shallow Eutrophic Taihu Lake, China(Dissertation). Nanjing University, Nanjing(in Chinese with English abstract).
      Zhao, L.D., Dong, H.L., Kukkadapu, R., et al., 2013. Biological Oxidation of Fe(Ⅱ) in Reduced Nontronite Coupled with Nitrate Reduction by Pseudogulbenkiania sp. Strain 2002. Geochimica et Cosmochimica Acta, 119: 231-247. https://doi.org/10.1016/j.gca.2013.05.033
      贺纪正, 张丽梅, 2009. 氨氧化微生物生态学与氮循环研究进展. 生态学报, 29(1): 406-415. doi: 10.3321/j.issn:1000-0933.2009.01.049
      胡敏, 李芳柏, 2014. 土壤微生物铁循环及其环境意义. 土壤学报, 51(4): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201404002.htm
      柳广飞, 朱佳琪, 于华莉, 等, 2018. 电子穿梭体介导微生物还原铁氧化物的研究进展. 地球科学, 43(增刊1): 157-170. doi: 10.3799/dqkx.2018.590
      王茹, 郑平, 张萌, 等, 2015. 硝酸盐型厌氧铁氧化菌的种类、分布和特性. 微生物学通报, 42(12): 2448-2456. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201512018.htm
      谢树成, 杨欢, 罗根明, 等, 2012. 地质微生物功能群: 生命与环境相互作用的重要突破口. 科学通报, 57(1): 3-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201201005.htm
      张勋, 陈天虎, 王进, 等, 2018. 铁氧化物对有机质厌氧产甲烷过程的影响及其机制. 地球科学, 43(增刊1): 136-144. doi: 10.3799/dqkx.2018.545
      赵琳, 2013. 伊乐藻-氮循环菌共同作用对太湖氮循环的影响(硕士学位论文). 南京: 南京大学.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (1504) PDF downloads(33) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return