• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 10
    Nov.  2021
    Turn off MathJax
    Article Contents
    Du Jiayuan, Zhang Xiangtao, Liu Pei, Luo Ming, Zhang Qin, Yao Jiali, Wang Xucheng, Liang Jie, 2021. Classification of Paleogene Source-to-Sink System and Its Petroleum Geological Significance in Zhuyi Depression of Pearl River Mouth Basin. Earth Science, 46(10): 3690-3706. doi: 10.3799/dqkx.2020.133
    Citation: Du Jiayuan, Zhang Xiangtao, Liu Pei, Luo Ming, Zhang Qin, Yao Jiali, Wang Xucheng, Liang Jie, 2021. Classification of Paleogene Source-to-Sink System and Its Petroleum Geological Significance in Zhuyi Depression of Pearl River Mouth Basin. Earth Science, 46(10): 3690-3706. doi: 10.3799/dqkx.2020.133

    Classification of Paleogene Source-to-Sink System and Its Petroleum Geological Significance in Zhuyi Depression of Pearl River Mouth Basin

    doi: 10.3799/dqkx.2020.133
    • Received Date: 2020-04-01
      Available Online: 2021-11-03
    • Publish Date: 2021-11-03
    • The reservoirs developed in the two sets of high-quality hydrocarbon-generating layers in the deep Paleogene of the Zhuyi depression have the advantages of near-source accumulation, but their characteristics of strong heterogeneity, low porosity and permeability have restricted oil and gas exploration. The directly related source-to-sink system is of great significance for finding a favorable area for coupling of hydrocarbon-rich and optimal reservoirs. Based on the influence of regional tectonic movements, and combining the structural characteristics of the rift lake basin with the semi-submarine ridge as its basic unit, source-to-sink system is divided into three levels of basin-level, half-graben-level, and zone-level. Basin-level source-to-sink system is further divided into external and internal source types, which can be used to analyze the distribution of high-quality source rocks; half-graben-level source-to-sink system is further classified into steep slopes, gentle slopes, and long-axis types, which is of great significance to qualitative evaluation of reservoir quality; zone-level source-to-sink system is further divided into three types of migration, conversion, and stability, which provides a good reference for target evaluation and well selection in favorable areas. It is considered that migration-type and conversion-type source-to-sink system can form a good configuration of high-quality source rocks and reservoirs, and are the most favorable oil and gas enrichment areas, which should be the focus of Paleogene exploration.

       

    • loading
    • Chen, J., Jiang, Z.X., Zhang, W.Y., et al., 2018. Discussion on Depositional Models of Modern Aeolian Facies under the Guidance of Source-to-Sink System Theory: A Case Study of East Coast of Qinghai Lake. Journal of Desert Research, 38(5): 999-1008(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGSS201805012.htm
      Chen, C.M., Shi, H.S., Xu, S.C., et al., 2003. The Conditions for Hydrocarbon Accumulation in the Eastern Pearl River Mouth Basin. Science Press, Beijing, 65-88(in Chinese).
      Deng, P., 2018. The Nature and Tectonic Transition of the Multiphase Rifting in the Northern Margin of the South China Sea: Based on the Study of the Zhu I Depression in Pearl River Mouth Basin(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Guo, L.Z., Zhong, Z.H., Wang, L.S., et al., 2001. Regional Tectonic Evolution around Yinggehai Basin of South China Sea. Geological Journal of China Universities, 7(1): 1-12(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=GXDX200101000&dbcode=CJFD&year=2001&dflag=pdfdown
      Lee, T., Lawver, L.A., 1995. Cenozoic Plate Reconstruction of Southeast Asia. Tectonophysics, 251: 85-138. doi: 10.1016/0040-1951(95)00023-2
      Li, T.G., Cao, Q.Y., Li, A.C., et al., 2003. Source to Sink: Sedimentation in the Continental Margins. Advance in Earth Sciences, 18(5): 713-721(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200305011.htm
      Li, Z., Gao, J., 2016. Characteristic Source-Sink Systems and Palaeogeographic Reconstruction in Active Tectonic Regions: A Case Research on Detrital Zircons Recording the Pan-African Event in Northern Tarim Block. Journal of Palaeogeography, 18(3): 424-440(in Chinese with English abstract). http://www.cqvip.com/QK/84020X/20163/669209209.html
      Li, Z., Gao, J., Guo, C.T., et al., 2015. Devonian-Carboniferous Tectonic Evolution of Continental Margins in Northern Tarim Block, Northwest China: Constrained by Basin-Fill Sequences and Provenance Systems. Earth Science Frontiers, 22(1): 35-52(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201501005.htm
      Li, Z., Xu, J.Q., Gao, J., 2013. Basin-Range System Sedimentology and Case Studies in North China and Tarim Areas, China. Acta Sedimentologica Sinica, 31(5): 757-772(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cjxb201305003
      Lin, C.S., Xia, Q.L., Shi, H.S., et al., 2015. Geomorphological Evolution, Source to Sink System and Basin Analysis. Earth Science Frontiers, 22(1): 9-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201501003.htm
      Liu, P., Zhang, X.T., Du, J.Y., et al., 2018. Tectonic-Thermal Evolution Process and the Petroleum Geological Significance of Relatively Low Geothermal Gradient in a Rift Basin: An Example from Xijiang Main Sag in Pearl River Mouth Basin. Geological Science and Technology Information, 37(2): 149-156(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201802021.htm
      Liu, Q.H., Zhu, X.M., Li, S.L., et al., 2016. Pre-Palaeogene Bedrock Distribution and Source-to-Sink System Analysis in the Shaleitian Uplift. Earth Science, 41(11): 1935-1949(in Chinese with English abstract).
      Northrup, C.J., Royden, L.H., Burchfiel, B.C., 1995. Motion of the Pacific Plate Relative to Eurasia and Its Potential Relation to Cenozoic Extension along the Eastern Margin of Eurasia. Geology, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2
      Pang, X., Chen, C.M., Peng, D.J., et al., 2007a. Sequence Stratigraphy of Pearl River Deep-Water Fan System in the South China Sea. Earth Science Frontiers, 14(1): 220-229(in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60010-4
      Pang, X., Chen, C.M., Peng, D.J., et al., 2007b. The Pearl River Deep-Water Fan System and Petroleum in South China Sea. Science Press, Beijing, 26-55(in Chinese).
      Pang, X., Shen, J., Yuan, L.Z., et al., 2006. Petroleum Prospect in Deep-Water Fan System of the Pearl River in the South China Sea. Acta Petrolei Sinica, 27(3): 11-15(in Chinese with English abstract). http://www.researchgate.net/publication/292805775_Petroleum_prospect_in_deep-water_fan_system_of_the_Pearl_River_in_the_South_China_Sea
      Shi, H.S., Du, J.Y., Mei, L.F., et al., 2020. Huizhou Movement and Its Implications in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 1-15(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380420600672
      Shi, H.S., Shu, Y., Du, J.Y., et al., 2017. Paleogene Petroleum Geology in the Eastern Pearl River Mouth Basin. Geological Publishing House, Beijing(in Chinese).
      Shi, H.S., Yu, S.M., Mei, L.F., et al., 2009. Features of Paleogene Episodic Rifting in Huizhou Fault Depression in the Pearl River Mouth Basin. Natural Gas Industry, 29(1): 35-37, 40(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG200901012.htm
      Suo, Y.H., Li, S.Z., Dai, L.M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618(in Chinese with English abstract). http://www.oalib.com/paper/1473902
      Wan, Y., Han, T.D., Duan, C.Q., et al., 2005. Landform System Structures and Characteristics of the Diancang Mountain Areas in West Yunnan Province. Journal of Glaciology and Geocryology, 27(2): 241-248(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-bcdt20050200d.htm
      Wang, X.X., Zhu, X.M., Song, S., et al., 2016. "Source-to-Sink" System of the Lower Member 3 of Paleogene Shahejie Formation in Steep Slope Zone of Western Chezhen Sub-Sag, Bohai Bay Basin. Journal of Palaeogeography, 18(1): 65-79(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=GDLX201601006&dbcode=CJFD&year=2016&dflag=pdfdown
      Xie, Y.H., Li, X.S., Fan, C.W., et al., 2016. The Axial Channel Provenance System and Natural Gas Accumulation of the Upper Miocene Huangliu Formation in Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 43(4): 521-549(in Chinese with English abstract). http://www.onacademic.com/detail/journal_1000039519544610_8856.html
      Xu, C.G., Du, X.F., 2017. Industrial Application of Source-to-Sink Theory in Continental Rift Basin: A Case Study of Bohai Sea Area. China Offshore Oil and Gas, 29(4): 9-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201704002.htm
      Xu, C.G., Du, X.F., Xu, W., et al., 2017a. New Advances of the "Source-to-Sink" System Research in Sedimentary Basin. Oil & Gas Geology, 38(1): 1-11(in Chinese with English abstract). http://www.researchgate.net/publication/316935609_New_advances_of_the_Source-to-Sink_system_research_in_sedimentary_basin
      Xu, C.G., Jia, D.H., Wan, L.W., 2017b. Control of the Strike-Slip Fault to the Source-to-Sink System of the Paleogene in Bohai Sea Area. Earth Science, 42(11): 1871-1881(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201711002.htm
      Zhou, Z.Y., Li, C.F., 2008. Tectonic of Continental Edge and Geodynamic. Science Press, Beijing, 66-88(in Chinese).
      Zhu, H.T., Xu, C.G., Zhu, X.M., et al., 2017. Advances of the Source-to-Sink Units and Coupling Model Research in Continental Basin. Earth Science, 42(11): 1851-1870(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQKX201711001&dbcode=CJFD&year=2017&dflag=pdfdown
      Zhu, H.T., Yang, X.H., Zhou, X.H., et al., 2013. Sediment Transport Pathway Characteristics of Continental Lacustrine Basins Based on 3-D Seismic Data: An Example from Dongying Formation of Western Slope of Bozhong Sag. Earth Science, 38(1): 121-129(in Chinese with English abstract).
      Zhu, X., Zhu, H.T., Zeng, H.L., et al., 2017. Subdivision, Characteristics, and Varieties of the Source-to-Sink Systems of the Modern Lake Erhai Basin, Yunnan Province. Earth Science, 42(11): 2010-2024(in Chinese with English abstract). http://www.researchgate.net/publication/322299580_Subdivision_Characteristics_and_Varieties_of_the_Source-to-Sink_Systems_of_the_Modern_Lake_Erhai_Basin_Yunnan_Province
      Zhu, Y.H., Zhu, W.L., Xu, Q., et al., 2011. Sedimentary Response to Shelf-Edge Delta and Slope Deep-Water Fan in 13.8 Ma of Miocene Epoch in Pearl River Mouth Basin. Journal of Central South University (Science and Technology), 42(12): 3827-3834(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=ZNGD201112038&dbcode=CJFD&year=2011&dflag=pdfdown
      陈骥, 姜在兴, 张万益, 等, 2018. "源-汇"沉积体系主导下的现代风成相发育模式探讨: 以青海湖东岸为例. 中国沙漠, 38(5): 999-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201805012.htm
      陈长民, 施和生, 许仕策, 等, 2003. 珠江口盆地(东部)第三系油气藏形成条件. 北京: 科学出版社, 65-88.
      邓棚, 2018. 南海北部陆缘古近纪多幕裂陷作用属性及转换——以珠江口盆地珠一坳陷为例(博士学位论文). 武汉: 中国地质大学.
      郭令智, 钟志洪, 王良书, 等, 2001. 莺歌海盆地周边区域构造演化. 高校地质学报, 7(1): 1-12. doi: 10.3969/j.issn.1006-7493.2001.01.001
      李铁刚, 曹奇原, 李安春, 等, 2003. 从源到汇: 大陆边缘的沉积作用. 地球科学进展, 18(5): 713-721. doi: 10.3321/j.issn:1001-8166.2003.05.011
      李忠, 高剑, 2016. 构造活动区特征源汇体系及古地理重建: 以塔里木块体北缘记录"泛非"事件的碎屑锆石分析为例. 古地理学报, 18(3): 424-440. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201603010.htm
      李忠, 高剑, 郭春涛, 等, 2015. 塔里木块体北部泥盆-石炭纪陆缘构造演化: 盆地充填序列与物源体系约束. 地学前缘, 22(1): 35-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501005.htm
      李忠, 徐建强, 高剑, 2013. 盆山系统沉积学-兼论华北和塔里木地区研究实例. 沉积学报, 31(5): 757-772. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305003.htm
      林畅松, 夏庆龙, 施和生, 等, 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501003.htm
      刘培, 张向涛, 杜家元, 等, 2018. 低地温断陷构造-热演化过程及其石油地质意义: 以珠江口盆地西江主洼为例. 地质科技情报, 37(2): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802021.htm
      刘强虎, 朱筱敏, 李顺利, 等, 2016. 沙垒田凸起前古近系基岩分布及源-汇过程. 地球科学, 41(11): 1935-1949. doi: 10.3799/dqkx.2016.134
      庞雄, 陈长民, 彭大钧, 等, 2007a. 南海珠江深水扇系统的层序地层学研究. 地学前缘, 14(1): 220-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200701023.htm
      庞雄, 陈长民, 彭大钧, 等, 2007b. 南海珠江深水扇系统及油气. 北京: 科学出版社, 26-55.
      庞雄, 申俊, 袁立忠, 等, 2006. 南海珠江深水扇系统及其油气勘探前景. 石油学报, 27(3): 11-15. doi: 10.3321/j.issn:0253-2697.2006.03.003
      施和生, 杜家元, 梅廉夫, 等, 2020, 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm
      施和生, 舒誉, 杜家元, 等, 2017. 珠江口盆地古近系石油地质. 北京: 地质出版社.
      施和生, 于水明, 梅廉夫, 等, 2009. 珠江口盆地惠州凹陷古近纪幕式裂陷特征. 天然气工业, 29(1): 35-37, 40. doi: 10.3787/j.issn.1000-0976.2009.01.008
      索艳慧, 李三忠, 戴黎明, 等, 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化. 岩石学报, 28(8): 2602-2618. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208026.htm
      万晔, 韩添丁, 段昌群, 等, 2005. 滇西名山点苍山地区地貌结构与特征研究. 冰川冻土, 27(2): 241-248. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT20050200D.htm
      王星星, 朱筱敏, 宋爽, 等, 2016. 渤海湾盆地车西洼陷陡坡带古近系沙河街组沙三下段"源-汇"系统. 古地理学报, 18(1): 65-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201601006.htm
      谢玉洪, 李绪深, 范彩伟, 等, 2016. 琼东南盆地上中新统黄流组轴向水道"源-汇"系统与天然气成藏特征. 石油勘探与开发, 43(4): 521-549. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604004.htm
      徐长贵, 杜晓峰, 2017. 陆相断陷盆地源-汇理论工业化应用初探: 以渤海海域为例. 中国海上油气, 29(4): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201704002.htm
      徐长贵, 杜晓峰, 徐伟, 等, 2017a. 沉积盆地"源-汇"系统研究新进展. 石油与天然气地质, 38(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201701002.htm
      徐长贵, 加东辉, 宛良伟, 2017b. 渤海走滑断裂对古近系"源-汇"系统的控制作用. 地球科学, 42(11): 1871-1881. doi: 10.3799/dqkx.2017.118
      周祖翼, 李春峰, 2008. 大陆边缘构造与地球力学. 北京: 科学出版社, 66-88.
      朱红涛, 徐长贵, 朱筱敏, 等, 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851-1870. doi: 10.3799/dqkx.2017.117
      朱红涛, 杨香华, 周心怀, 等, 2013. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例. 地球科学, 38(1): 121-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301016.htm
      朱秀, 朱红涛, 曾洪流, 等, 2017. 云南洱海现代湖盆源-汇系统划分、特征及差异. 地球科学, 42(11): 2010-2024. doi: 10.3799/dqkx.2017.128
      祝彦贺, 朱伟林, 徐强, 等, 2011. 珠江口盆地13.8 Ma陆架边缘三角洲与陆坡深水扇的"源汇"关系. 中南大学学报(自然科学版), 42(12): 3827-3834. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201112038.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(2)

      Article views (1256) PDF downloads(123) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return