• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 5
    May  2021
    Turn off MathJax
    Article Contents
    Gao Baolong, Hu Zhengwang, Li Duan, Du Jinsong, 2021. Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method. Earth Science, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134
    Citation: Gao Baolong, Hu Zhengwang, Li Duan, Du Jinsong, 2021. Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method. Earth Science, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134

    Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method

    doi: 10.3799/dqkx.2020.134
    • Received Date: 2020-07-22
    • Publish Date: 2021-05-15
    • With the accumulation of measured magnetic data, it is becoming urgent to use these data efficiently. Previous studies have shown that it is difficult to meet the accuracy requirement for solving geological problems by using the measured data from a single observation method. Because of the limitations and differences in resolution, accuracy, elevation and range of magnetic data obtained by various methods, single dataset can only effectively reflect the information over a certain range of wavelength of magnetic field. An effective way to solve this problem is the fusion of data. Therefore, based on the equivalent source method, a multi-layer equivalent source technology is proposed in this paper, which can be applied to the fusion of ground and airborne magnetic data to improve the accuracy of interpolation, continuation, extension, transformation, et al. According to the spectral characteristics of observation data, three-layer equivalent sources at different depths are used to fit the measured data. Compared with the traditional single-layer equivalent source method, it can reduce the blindness for setting equivalent sources, and improve the ordering and structural performance for allotting observation information into equivalent sources. Synthetic experiment shows that the three-layer model has higher computational accuracy, and data fusion can significantly improve each dataset. Finally, the method is applied to the fusion of ground and airborne magnetic data in Jinniu basin, Hubei, and abundant magnetic data with regular distribution on a plane are obtained.

       

    • loading
    • An, Y.L., Chai, Y.P., Zhang, M.H., et al., 2013. An Optimal Model of the Equivalent Source for Reduction-to-Plane of Potential Field on Uneven Surface and the New Method to Deduce Unit Potential Field Expression of the Optimal Model. Chinese Journal of Geophysics, 56(7): 2473-2483 (in Chinese with English abstract). doi: 10.1002/cjg2.20045/full
      Andrews, S. B., Moore, P., King, M. A., 2015. Mass Change from GRACE: A Simulated Comparison of Level-1B Analysis Techniques. Geophysical Journal International, 200(1): 503-518. https://doi.org/10.1093/gji/ggu402
      Asgharzadeh, M. F., von Frese, R. R. B., Kim, H. R., 2008. Spherical Prism Magnetic Effects by Gauss-Legendre Quadrature Integration. Geophysical Journal International, 173(1): 315-333. https://doi.org/10.1111/j.1365-246X.2007.03692.x
      Barnes, G., Lumley, J., 2011. Processing Gravity Gradient Data. Geophysics, 76(2): I33-I47. https://doi.org/10.1190/1.3548548
      Barzaghi, R., Tselfes, N., Tziavos, I. N., et al., 2008. Geoid and High Resolution Sea Surface Topography Modelling in the Mediterranean from Gravimetry, Altimetry and GOCE Data: Evaluation by Simulation. Journal of Geodesy, 83(8): 751-772. https://doi.org/10.1007/s00190-008-0292-z
      Bhattacharyya, B.K., Chan, K.C., 1977. Reduction of Magnetic and Gravity Data on an Arbitrary Surface Acquired a Region of High Topographic. Geophysics, 42(42): 1411-1430. https://doi.org/10.1190/1.1440802 http://adsabs.harvard.edu/abs/1977Geop...42.1411B
      Clark, D.A., 2013. New Method for Interpretation of Magnetic Vector and Gradient Tensor Data Ⅱ: Application to the Mount Leyshon Anomaly, Queensland, Australia. Exploration Geophysics, 44(2): 114-127. https://doi.org/10.1071/EG12066
      Cordell, L., Grauch, V.J.S., 1982. Reconciliation of the Discrete and Integral Fourier Transforms. Geophysics, 47(2): 237-243. https://doi.org/10.1190/1.1441330
      Dampney, C. N. G., 1969. The Equivalent Source Technique. Geophysics, 34(1): 39-53. doi: 10.1190/1.1439996
      Du, J.S., Chen, C., 2015. Progress and Outlook in Global Lithospheric Magnetic Field Modelling by Satellite Magnetic Measurements. Progress in Geophysics, 30(3): 1017-1033 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201503005.htm
      Featherstone, W.E., 2003. Software for Computing Five Existing Types of Deterministically Modified Integration Kernel for Gravimetric Geoid Determination. Computer and Geosciences, 29(2): 183-193. https://doi.org/10.1016/S0098-3004(02)0074-2 doi: 10.1016/S0098-3004(02)00074-2
      Gao, X.B., Li, S.S., Li, H., et al., 2013. Application of Point Mass Model and Least Square Collocation in Multi-Source Gravity Data Fusion. Geodesy and Geodynamics, 33(1): 145-149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201301034.htm
      Guo, Z.H., Guan, Z.N., Xiong, S.Q., 2004. Cuboid ΔT and Its Gradient Forward Theoretical Expressions without Analytic Odd Points. Chinese Journal of Geophysics, 47(6): 1131-1138 (in Chinese with English abstract)
      Kim, H. R., von Frese, R. R. B., Taylor, P. T., et al., 2007. Improved Magnetic Anomalies of the Antarctic Lithosphere from Satellite and Near-Surface Data. Geophysical Journal International, 171(1): 119-126. https://doi.org/10.1111/j.1365-246X.2007.03516.x
      Li, D., 2018. Reconstruction Method of Gravity and Magnetic Fields by Equivalent Sources (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Li, D., Chen, C., Liang, Q., et al., 2018. Reconstruction of Discrete Data Using Three-Tier Equivalent Source with Variable Size. Earth Science, 43(3): 873-886 (in Chinese with English abstract).
      Li, D., Liang, Q., Du, J., et al., 2020. Transforming Total-Field Magnetic Anomalies into Three Components Using Dual-Layer Equivalent Source. Geophysical Research Letters, 47(3): e2019GL084607. https://doi.org/10.1029/2019GL084607 doi: 10.1029/2019GL084607
      Li, J.C., Chao, D.B., Ning, J.S., 1995. Spherical Cap Harmonic Expansion for Local Gravity Field Representation. Manuscripta Geodaetica, 20: 265-277. http://www.ingentaconnect.com/content/ssam/03408825/1995/00000020/00000004/art00004
      Li, Y., Nabighian, M., Oldenburg, D.W., 2014. Using an Equivalent Source with Positivity for Low-Latitude Reduction to the Pole without Striation. Geophysics, 79(6): J81-J90. https://doi.org/10.1190/GEO2014-0134.1 doi: 10.1190/geo2014-0134.1
      Li, Y., Oldenburg, D.W., 1996. 3-D Inversion of Magnetic Data. Geophysics, 61(2): 394-408. https://doi.org/10.1190/1.1443968
      MacLennan, C.A., Li, Y.G., 2013. Denoising Multicomponent CSEM Data with Equivalent Source Processing Techniques. Geophysics, 78(3): 125-135. https://doi.org/10.1190/GEO2012-0226.1 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SEGEAB000029000001000774000001&idtype=cvips&gifs=Yes
      Maus, S., Barckhausen, U., Berkenbosch, H., et al., 2009. EMAG2: A 2-Arc Min Resolution Earth Magnetic Anomaly Grid Compiled from Satellite, Airborne, and Marine Magnetic Measurements. Geochemistry, Geophysics, Geosystems, 10(8): Q08005. https://doi.org/10.1029/2009GC002471 doi: 10.1029/2009GC002471/abstract
      Oliveira Jr, V.C., Barbosa, V.C.F., Uieda, L., 2013. Polynomial Equivalent Layer. Geophysics, 78(1): 1-13. https://doi.org/10.1190/geo2012-0196.1 http://adsabs.harvard.edu/abs/2013Geop...78G...1O
      Ou, J. M., Du, A. M., Thébault, E., et al., 2013. A High Resolution Lithospheric Magnetic Field Model over China. Science China Earth Sciences, 56(10): 1759-1768. https://doi.org/10.1007/s11430-013-4580-y
      Pang, X.L., 2012. Research on Reduction of Aeromagnetic Anomalies by Means of Equivalent Source Technology (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract), .
      Pilkington, M., 1997. 3-D Magnetic Imaging Using Conjugate Gradients. Geophysics, 62(4): 1132-1142. https://doi.org/10.1190/1.1444214
      Purucker, M.E., 1990. The Computation of Vector Magnetic Anomalies: A Comparison of Techniques and Errors. Physics of the Earth and Planetary Interiors, 62: 231-245. https://doi.org/10.1016/0031-9201(90)90168-W
      Purucker, M.E., Ravat, D., Prey, H., et al., 2000. An Altitude-Normalized Magnetic Map of Mars and Its Interpretation. Geophysical Research Letters, 27(16): 2449-2452. doi: 10.1029/2000GL000072
      Ravat, D., Langel, R.A., Purucker, M., et al., 1995. Global Vector and Scalar Magsat Magnetic Anomaly Maps. Journal of Geophysical Research, 100: 20111-20136. doi: 10.1029/95JB01237
      Silva, J.B.C., Santos, D.F., Garabito, G., 2014. Harmonic and Biharmonic Biases in Potential Field Inversion. Geophysics, 79(1): G15-G25. https://doi.org/10.1190/GEO2013-0137.1 doi: 10.1190/geo2013-0137.1
      Sjöberg, L. E., 2005. A Local Least-Squares Modification of Stokes' Formula. Studia Geophysica et Geodaetica, 49(1): 23-30. https://doi.org/10.1007/s11200-005-1623-7
      Stolz, R., Zakosarenko, V., Schulz, M., et al., 2006. Magnetic Full-Tensor SQUID Gradiometer System for Geophysical Application. The Leading Edge, 25(2): 178-180. https://doi.org/10.1190/1.2172308
      Syberg, F.J.R., 1972. A Fourier Method for the Regional-Residual Problem of Potential Fields. Geophysical Prospecting, (20): 47-75. https://doi.org/10.1111/j.1365-2478.1972.tb00619.x
      Tikhonov, A.N., Arsenin, V.Y., 1977. Solution of Ill-Posed Problem. Mathematics of Computation, 32(144): 491-491.
      Whaler, K.A., 1994. Downward Continuation of Magsat Lithospheric Anomalies to the Earth's Surface. Geophysical Journal International, 116: 267-278. https://doi.org/10.1111/j.1365-246X.1994.tb01797.x
      Wu, Y.H., Luo, Z.C., Zhou, B.Y., 2016. Regional Gravity Modeling Based on Heterogeneous Data Sets by Using Poisson Wavelets Radial Basis Functions. Chinese Journal of Geophysics, 59(3): 852-864 (in Chinese with English abstract). doi: 10.6038/cjg20160308
      Xia, J., Sprowl, D.R., 1991. Correction of Topographic Distortion in Gravity Data. Geophysics, 56(4): 537-541. https://doi.org/10.1190/1.1443070
      Xie, R.K., Wang, P., Duan, S.L., et al., 2015. Analysis of the Reduction of Aeromagnetic Gradients Data to a Horizontal Plane. Progress in Geophysics, 30(6): 2836-2840 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQWJ201506051&dbcode=CJFD&year=2015&dflag=pdfdown
      Zhang, W., Zhang, X.J., Tong, J., et al., 2018. Gravity and Magnetic Anomaly Characteristics and Its Geological Interpretation in Rizhao and Lianyungang Areas. Earth Science, 43(12): 4490-4497 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812017.htm
      Zhou, J., Meng, X., Guo, L., et al., 2015. Three-Dimensional Cross-Gradient Joint Inversion of Gravity and Normalized Magnetic Source Strength Data in the Presence of Remanent Magnetization. Journal of Applied Geophysics, 199: 51-60. https://doi.org/10.1016/j.jappgeo.2015.05.001 http://www.sciencedirect.com/science/article/pii/S0926985115001512
      安玉林, 柴玉普, 张明华, 等, 2013. 曲化平用最佳等效源模型及其单位位场表达式推导的新方法. 地球物理学报, 56(7): 2473-2483. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307032.htm
      杜劲松, 陈超, 2015. 基于卫星磁测数据的全球岩石圈磁场建模进展与展望. 地球物理学进展, 30(3): 1017-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503005.htm
      高新兵, 李珊珊, 李海, 等, 2013. 点质量模型与最小二乘配置在多源重力数据融合中的应用. 大地测量与地球动力学, 33(1): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201301034.htm
      郭志宏, 管志宁, 熊盛青, 2004. 长方体ΔT场及其梯度场无解析奇异点理论表达式. 地球物理学报, 47(6): 1131-1138. doi: 10.3321/j.issn:0001-5733.2004.06.029
      李端, 2018. 基于等效源技术的重磁场重构方法(博士学位论文). 武汉: 中国地质大学.
      李端, 陈超, 梁青, 等, 2018. 基于三层变尺度等效源的离散重力数据重构. 地球科学, 43(3): 873-886. doi: 10.3799/dqkx.2017.513
      庞旭林, 2012. 航磁异常数据曲面延拓等效源法技术研究(硕士学位论文). 北京: 中国地质大学.
      吴怿昊, 罗志才, 周波阳, 2016. 基于泊松小波径向基函数融合多源数据的局部重力场建模. 地球物理学报, 59(3): 852-864. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603008.htm
      谢汝宽, 王平, 段树岭, 等, 2015. 航磁梯度数据曲化平分析. 地球物理学进展, 30(6): 2836-2840. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201506051.htm
      张婉, 张玄杰, 佟晶, 等, 2018. 日照-连云港地区重磁异常特征及其构造意义. 地球科学, 43(12): 4490-4497. doi: 10.3799/dqkx.2018.518
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(3)

      Article views (1441) PDF downloads(96) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return