Citation: | Chang Qingsong, Wang Huichu, Shi Jianrong, Ren Yunwei, 2020. Zircon U-Pb Chronology and Petrogenesis of Two Types of Remelting Granite in Jining Area. Earth Science, 45(9): 3258-3267. doi: 10.3799/dqkx.2020.135 |
Chen, H. D., Wang, Z. L., Lu, N., et al., 2016. Zircon LA-ICP-MS U-Pb Age and Tectonic Significance of the Garnet Granites from Helin-Liangcheng Zone of Central Inner Mongolia. Geology in China, 43(1):81-90 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201601005
|
Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93-1.92 Ga Caused by Gabbronorite Intrusions:Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222-223:124-142. https://doi.org/10.1016/j.precamres.2011.07.020
|
Kröner, A., Wilde, S. A., Li, J. H., et al., 2005. Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China. Journal of Asian Earth Sciences, 24(5):577-595. https://doi.org/10.1016/j.jseaes.2004.01.001
|
Kröner, A., Wilde, S. A., Zhao, G. C., et al., 2006. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China:Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 146(1-2):45-67. https://doi.org/10.1016/j.precamres.2006.01.008
|
Luo, Z. B., Zhang, H. F., Zhang, R. Y., et al., 2012. Forming Temperatures of Paleoproterozoic Metamophic Peraluminous-Strong Peraluminous Granites in Zhuozi-Liangcheng, Inner Mongolia:Evidence for Regional High-Ultra High Temperatures Metamorphism. Journal of Mineralogy and Petrology, 32(2):20-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201202005.htm
|
Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6):529. https://doi.org/10.1130/0091-7613(2003)0310529:hacgio>2.0.co; 2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2
|
Peng, P., Guo, J. H., Windley, B. F., et al., 2012b. Petrogenesis of Late Paleoproterozoic Liangcheng Charnockites and S-Type Granites in the Central-Northern Margin of the North China Craton:Implications for Ridge Subduction. Precambrian Research, 222-223:107-123. https://doi.org/10.1016/j.precamres.2011.06.002
|
Peng, P., Guo, J. H., Zhai, M. G., et al., 2010. Paleoproterozoic Gabbronoritic and Granitic Magmatism in the Northern Margin of the North China Craton:Evidence of Crust-Mantle Interaction. Precambrian Research, 183(3):635-659. https://doi.org/10.1016/j.precamres.2010.08.015
|
Peng, P., Guo, J. H., Zhai, M. G., et al., 2012a. Genesis of the Hengling Magmatic Belt in the North China Craton:Implications for Paleoproterozoic Tectonics. Lithos, 148:27-44. https://doi.org/10.1016/j.lithos.2012.05.021
|
Peng, P., Zhai, M. G., Zhang, H. F., et al., 2004. Geochemistry and Geological Significance of the 1.8 Ga Mafic Dyke Swarms in the North China Craton. Acta Petrologica Sinica, 20(3):439-456 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403008
|
Santosh, M., Sajeev, K., Li, J. H., 2006. Extreme Crustal Metamorphism during Columbia Supercontinent Assembly:Evidence from North China Craton. Gondwana Research, 10(3-4):256-266. https://doi.org/10.1016/j.gr.2006.06.005
|
Santosh, M., Wilde, S. A., Li, J. H., 2007. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton:Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 159(3-4):178-196. https://doi.org/10.1016/j.precamres.2007.06.006
|
Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4):29-44. https://doi.org/10.1016/S0024-4937(98)00024-3
|
Wang, L. J., Guo, J. H., Yin, C. Q., et al., 2017. Petrogenesis of Ca. 1.95 Ga Meta-Leucogranites from the Jining Complex in the Khondalite Belt, North China Craton:Water-Fluxed Melting of Metasedimentary Rocks. Precambrian Research, 303:355-371. https://doi.org/10.1016/j.precamres.2017.04.036
|
Wang, Y. J., Peng, T. P., Fan, W. M., et al., 2007. Early Proterozic Mafic Dikes in the North China Craton and Their Tectonic Implications. Bulletin of Mineralogy, Petrology and Geochemistry, 26(1):1-9 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200701001
|
Wang, Y. J., Zhao, G. C., Cawood, P. A., et al., 2008. Geochemistry of Paleoproterozoic (∼1 770 Ma) Mafic Dikes from the Trans-North China Orogen and Tectonic Implications. Journal of Asian Earth Sciences, 33(1/2):61-77. https://doi.org/10.1016/j.jseaes.2007.10.018
|
Wei, C. J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1):24-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801002
|
Zhai, M. G., 2004.2.1-1.7 Ga Geological Event Group and Its Geotectonic Significance. Acta Petrologica Sinica, 20(6):1343-1354 (in Chinese with English abstract).
|
Zhai, M. G., 2012. Evolution of the North China Craton and Early Plate Tectonics. Acta Geologica Sinica, 86(9):1335-1349 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201209004.htm
|
Zhai, M. G., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton:A Review. Precambrian Research, 122(1-4):183-199. https://doi.org/10.1016/S0301-9268(02)00211-5
|
Zhai, M. G., Peng, P., 2007. Paleoproterozoic Events in the North China Craton. Acta Petrologica Sinica, 23(11):2665-2682 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200711002.htm
|
Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview. Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005
|
Zhang, H. F., Luo, Z. B., Wang, H. Z., 2013. Paleoproterozic 2.0 Ga Meta-Granite in the Liangcheng Area, Inner Mongolia:Constraint on Regional Ultra-High Temperature Metamorphism. Acta Petrologica Sinica, 29(7):2391-2404 (in Chinese with English abstract). http://www.researchgate.net/publication/287640516_Paleoproterozic_20Ga_meta-granite_in_the_Liangcheng_area_Inner_Mongolia_Constraint_on_regional_ultra-high_temperature_metamorphism?ev=auth_pub
|
Zhang, J. H., Tian, H., Wang, H. C., et al., 2019. Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton:Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1):1-22 (in Chinese with English abstract). http://www.researchgate.net/publication/332108466_Re-Definition_of_the_Two-Stage_Early-Precambrian_Meta-Supracrustal_Rocks_in_the_Huai'an_Complex_North_China_Craton_Evidences_from_Petrology_and_Zircon_U-Pb_Geochronology
|
Zhang, J. H., Wang, H. C., Guo, J. H., et al., 2020. Petrogenesis of the~2.03 Ga Meta-Garnet Granite in the Huai'an Complex of the North China Craton:Further Evidence on a Paleoproterozoic Rift-Related Tectonic Regime. Geological Survey and Research, 43(2):114-126 (in Chinese with English abstract).
|
Zhang, Y. Q., Wang, G. M., Xu, Y. W., et al., 2015. Methods for Choosing Target Points In-Situ Zircon U-Pb Dating. Geological Survey and Research, 38(3):233-238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201503012
|
Zhang, Y. Q., Zhang, T., Chen, H. D., et al., 2016. LA-MC-ICP-MS Zircon U-Pb Dating of Garnet Monzonitic Granite in the Manhan Mountain of Liangcheng, Inner Mongolia, and Its Petrogenesis. Geology in China, 43(3):768-779 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201603006
|
Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton:Key Issues and Discussion. Precambrian Research, 222-223:55-76. https://doi.org/10.1016/j.precamres.2012.09.016
|
Zhao, G. C., Cawood, P. A., Lu, L. Z., 1999. Petrology and P-T History of the Wutai Amphibolites:Implications for Tectonic Evolution of the Wutai Complex, China. Precambrian Research, 93(2-3):181-199. https://doi.org/10.1016/S0301-9268(98)00090-4
|
Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1):55-88. https://doi.org/10.1016/S0301-9268(00)00076-0
|
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2003. Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent:Records in the North China Craton. Gondwana Research, 6(3):417-434. https://doi.org/10.1016/S1342-937X(05)70996-5
|
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002
|
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00154-6
|
Zhong, C. T., Deng, J. F., Wan, Y. S., et al., 2007. Magmarecording of Paleoprotozoic Orogeny in Central Segment of Northern Margin of Nor China Craton:Geochemical Characteristics and Zircon SHRIMP Dating of S-Type Granitoids. Geochimica, 36(6):585-600 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geochimica_thesis/0201252980786.html
|
陈海东, 王子龙, 鲁宁, 等, 2016.内蒙古中部和林-凉城一带石榴花岗岩LA-ICP-MS锆石U-Pb年龄及构造意义.中国地质, 43(1):81-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201601005
|
罗志波, 张华锋, 张若愚, 等, 2012.内蒙卓资-凉城地区古元古代变质过铝/强过铝花岗岩的形成温度:区域高温/超高温变质作用证据.矿物岩石, 32(2):20-30. http://d.wanfangdata.com.cn/Periodical/kwys201202004
|
彭澎, 翟明国, 张华锋, 等, 2004.华北克拉通1.8 Ga镁铁质岩墙群的地球化学特征及其地质意义:以晋冀蒙交界地区为例.岩石学报, 20(3):439-456. http://www.cqvip.com/Main/Detail.aspx?id=10140828
|
王岳军, 彭头平, 范蔚茗, 等, 2007.华北陆块早元古代基性岩墙群及其构造意义.矿物岩石地球化学通报, 26(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200701001
|
魏春景, 2018.华北中部造山带五台-恒山地区古元古代变质作用与构造演化.地球科学, 43(1):24-43. doi: 10.3799/dqkx.2018.002
|
翟明国, 2004.华北克拉通2.1~1.7 Ga地质事件群的分解和构造意义探讨.岩石学报, 20(6):1343-1354. http://d.wanfangdata.com.cn/Periodical/ysxb98200406004
|
翟明国, 2012.华北克拉通的形成以及早期板块构造.地质学报, 86(9):1335-1349. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201209002
|
翟明国, 彭澎, 2007.华北克拉通古元古代构造事件.岩石学报, 23(11):2665-2682. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200711001
|
张华锋, 罗志波, 王浩铮, 2013.内蒙凉城2.0 Ga变质花岗岩对超高温变质作用的制约.岩石学报, 29(7):2391-2404. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201307009
|
张家辉, 田辉, 王惠初, 等, 2019.华北克拉通怀安杂岩中早前寒武纪两期变质表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1):1-22. doi: 10.3799/dqkx.2018.259
|
张家辉, 王惠初, 郭敬辉, 等, 2020.华北克拉通怀安杂岩中~2.03 Ga变质石榴花岗岩的成因其对古元古代裂谷事件的制约.地质调查与研究, 43(2):114-126
|
张永清, 王国明, 许雅雯, 等, 2015.锆石微区原位U-Pb定年的测定位置选择方法.地质调查与研究, 38(3):233-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201503012
|
张玉清, 张婷, 陈海东, 等, 2016.内蒙古凉城蛮汗山石榴石二长花岗岩LA-MC-ICP-MS锆石U-Pb年龄及成因讨论.中国地质, 43(3):768-779. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201603006
|
钟长汀, 邓晋福, 万渝生, 等, 2007.华北克拉通北缘中段古元古代造山作用的岩浆记录:S型花岗岩地球化学特征及锆石SHRIMP年龄.地球化学, 36(6):585-600. http://d.wanfangdata.com.cn/Periodical/dqhx200706007
|
![]() |
![]() |