• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 11
    Nov.  2020
    Turn off MathJax
    Article Contents
    Yin Tao, Zhang Wei, Yin Xianke, Pei Yalun, 2020. Zircon U-Pb Ages, Geochemistry and Geological Significance of Diorite Porphyrite in Jiangma Area, Tibet. Earth Science, 45(11): 4128-4142. doi: 10.3799/dqkx.2020.136
    Citation: Yin Tao, Zhang Wei, Yin Xianke, Pei Yalun, 2020. Zircon U-Pb Ages, Geochemistry and Geological Significance of Diorite Porphyrite in Jiangma Area, Tibet. Earth Science, 45(11): 4128-4142. doi: 10.3799/dqkx.2020.136

    Zircon U-Pb Ages, Geochemistry and Geological Significance of Diorite Porphyrite in Jiangma Area, Tibet

    doi: 10.3799/dqkx.2020.136
    • Received Date: 2020-02-20
    • Publish Date: 2020-11-15
    • There are relatively few reports on the intermediate-acid intrusive rocks in the Bangonghu-Nujiang ophiolitic melange belt, the study on the petrogenesis and tectonic setting of this rocks is important to define the geodynamic evolution of Bangonghu-Nujiang Tethys oceanic. It reports zircon U-Pb age and major-trace elements for the diorite porphyrite from the Jiangma area in the Bangonghu-Nujiang suture zone. Zircon LA-ICP-MS U-Pb dating of the diorite porphyrite yields an Early Cretaceous age of a 121±1 Ma, indicating that the intruded rocks were formed in the late Early Cretaceous period. Geochemical studies show that diorite porphyrite has typical geochemical characteristics similar to the high-alumina basalts. They are characterized by high Al2O3 contents (18.2%-19.3%), and enriched in light rare earth elements and large ion lithophile elements (Rb and K), but depleted in high field strength elements (Nb, Ta and Ti). All of these geochemistry characteristics of the rocks are the same as the typically island arc basalts. Combined with the regional geological setting, the diorite porphyrite may be formed in an accretive arc environment related to the southward subduction of Bangonghu-Nujiang Tethys oceanic crust in late Early Cretaceous. The fluids derived from the subducted oceanic crust would metasomatize the overlying mantle peridotite to generate the mantle source of the studied diorite porphyrite.

       

    • loading
    • Anderson, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X
      Ariskin, A.A., 1999. Phase Equilibria Modeling in Igneous Petrology:Use of COMAGMAT Model for Simulating Fractionation of Ferro-Basaltic Magmas and the Ggenesis of High-Alumina Basalt. Journal of Volcanology and Geothermal Research, 90:115-162. doi: 10.1016/S0377-0273(99)00022-0
      Bartels, K.S., Kinzler, R.J., Grove, T.L., 1991. High Pressure Phase Relations of Primitive High-Alumina Basalt from Medicine Lake Volcano, Northern California. Contributions to Mineralogy and Petrology, 108:253-270. doi: 10.1007/BF00285935
      Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000. Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 165(3-4):197-213. doi: 10.1016/S0009-2541(99)00173-4
      Bebout, G.E., 2007. Metamorphic Chemical Geodynamics of Subduction Zones. Earth and Planetary Science Letters, 260:373-393. doi: 10.1016/j.epsl.2007.05.050
      Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114.
      Brophy, J.G., Marsh, B.D., 1986. On the Origin of High-Alumina Arc Basalt and the Mechanics of Melt Extraction. Journal of Petrology, 27:763-789. doi: 10.1093/petrology/27.4.763
      Crawford, A.J., Falloon, T.J., Eggins, S., 1987. The Origin of Island Arc High Alumina Basalts. Contributions to Mineralogy and Petrology, 97:417-430. doi: 10.1007/BF00372004
      Dai, L.Q., Zheng, F., Zhao, Z. F., et al., 2018. Geochemical Insights into the Lithology of Mantle Sources for Cenozoic Alkali Basalts in West Qinling, China. Lithos, 302-303:86-98. doi: 10.1016/j.lithos.2017.12.013
      Du, D.D., Qu, X.M., Wang, G.H., et al., 2011. Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Arc Granites. Acta Petrologica Sinica, 27(7):1993-2002 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201107009.htm
      Eason, D., Sinton, J., 2006. Origin of High-Al N-MORB by Fractional Crystallization in the Upper Mantle beneath the Galápagos Spreading Center. Earth and Planetary Science Letters, 252:423-436. doi: 10.1016/j.epsl.2006.09.048
      Elliott, T., 2003. Tracers of the Slab. In: Eiler, J., ed., Inside the Subduction Factory. American Geophysical Union Geophysical Monograph, Washington, D.C., 23-45.
      Fan, J.J., Li, C., Xie, C.M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet:Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of Neo-Tethys. Int. Geol. Rev., 56(12):1504-1520. doi: 10.1080/00206814.2014.947639
      Fan, J.J., Zhang, B.C., Liu, H.Y., et al., 2019. Early-Middle Jurassic Intra-Oceanic Subduction of the Bangong-Nujiang Oceanic Lithosphere:Evidence of the Dong Co Ophiolite. Acta Petrologica Sinica, 35(10):3048-3064 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.06
      Fang, W., Dai, L.Q., Zheng, Y.F., et al., 2020. Tectonic Transition from Oceanic Subduction to Continental Collision:New Geochemical Evidence from Early-Middle Triassic Mafic Igneous Rocks in Southern Liaodong Peninsula, East-Central China. Geological Society of America Bulletin. https://doi.org/10.1130/B35278.1
      Floyd, P.A., Winchester, J.A., 1975. Magma Type and Tectonic Setting Discrimination Using Immobile Elements. Earth and Planetary Science Letters, (27):211-218. https://www.sciencedirect.com/science/article/pii/0012821X7590031X
      Geng, Q.R., Zhang, Z., Peng, Z.M., et al., 2016. Jurassic-Cretaceous Granitoids and Related Tectono-Metallogenesis in the Zapug-Duobuza Arc, Western Tibet. Ore Geology Reviews, 77:163-175. doi: 10.1016/j.oregeorev.2016.02.018
      Gribble, R.F., Stern, R.J., Newman, S., et al., 1998. Chemical and Isotopic Composition of Lavas from the Northern Mariana Trough:Implications for Magmagenesis in Back-Arc Basins. Journal of Petrology, 39(1):125-154. doi: 10.1093/petroj/39.1.125
      Grove, T.L., Till, C.B., Krawczynski, M.J., 2012. The Role of H2O in Subduction Zone Magmatism. Annual Review of Earth and Planetary Sciences, 40:413-439. doi: 10.1146/annurev-earth-042711-105310
      Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block:Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10):3106-3116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201010022.htm
      Kapp, P., DeCelles, P.G., Gehrels, G.E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8):917-933. doi: 10.1130/B26033.1
      Kelemen, P., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs with Emphasis on Primitive Andesite and Lower Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdan, 3: 612-615, 626-627.
      Kuno, H., 1960. High-Alumina Basalt. Journal of Petrology, 1:121-145. doi: 10.1093/petrology/1.2.121
      Le Maitre, R.W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 1-193.
      Li, G.M., Qin, K.Z., Li, J.X., et al., 2017. Cretaceous Magmatism and Metallogeny in the Bangong-Nujiang Metallogenic Belt, Central Tibet:Evidence from Petrogeochemistry, Zircon U-Pb Ages, and Hf-O Isotopic Compositions. Gondwana Research, 41:110-127. doi: 10.1016/j.gr.2015.09.006
      Li, S.G., 1993. Ba-Th-Nb-La Diagrams Used to Identify Tectonic Environments of Ophiolite. Acta Petrologica Sinica, 9(2):146-157 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199302004.htm
      Li, Y., He, J., Han, Z., et al., 2016. Late Jurassic Sodium-Rich Adakitic Intrusive Rocks in the Southern Qiangtang Terrane, Central Tibet, and Their Implications for the Bangong-Nujiang Ocean Subduction. Lithos, 245:34-46. doi: 10.1016/j.lithos.2015.10.014
      Liu, D.L., Shi, R.D., Ding, L., et al., 2018. Late Cretaceous Transition from Subduction to Collision along the Bangong-Nujiang Tethys:New Volcanic Constraints from Central Tibet. Lithos, 296-299:452-470. doi: 10.1016/j.lithos.2017.11.012
      Liu, W.L., Xia, B., Zhong, Y., et al., 2014. Age and Composition of the Rebang Co and Julu Ophiolites, Central Tibet:Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 56(4):430-447. doi: 10.1080/00206814.2013.873356
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082
      Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55:1535-1546. doi: 10.1007/s11434-010-3052-4
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004
      Ludwig, K.R., 2003.User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, Berkeley, 4:1-71. https://searchworks.stanford.edu/view/6739593
      Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56:207-218. doi: 10.1016/0009-2541(86)90004-5
      Olsen, K.H., 1995. Continental Rifts:Evolution, Structure, Tectonics. Elsevier, Amsterdam, 1-466.
      Ozerov, A.Y., 2000. The Evolution of High-Alumina Basalts of the Klyuchevskoy Volcano, Kamchatka, Russia, Based on Microprobe Analyses of Mineral Inclusions. Journal of Volcanology and Geothermal Research, 95:65-79. doi: 10.1016/S0377-0273(99)00118-3
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53:3-14. doi: 10.1016/j.jseaes.2011.12.018
      Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19:290-300. doi: 10.1016/0012-821X(73)90129-5
      Pearce, J.A., Stern, R.J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Geophys. Monogr. Ser. AGU, Washington, D. C., 63-86.
      Ringwood, A.E., 1990. Slab-Mantle Interactions:Petrogenesis of in Traplate Magmas and Structure of the Upper Mantle. Chemical Geology, 82:187-207. doi: 10.1016/0009-2541(90)90081-H
      Sandeman, H.A., Hanmer, S., Tella, S., et al., 2006. Petrogenesis of Neoar-Chaean Volcanic Rocks of the MacQuoid Supracrustal Belt:A Backarc Setting for the Northwestern Hearne Subdomain, Western Churchill Province, Canada. Precambrian Research, 144(1):140-165.
      Shervais, J.W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolithic Lavas. Earth & Planetary Science Letters, 59(1):101-118. https://www.sciencedirect.com/science/article/pii/0012821X82901200
      Sui, Q.L., 2014. Chronology, Petrogenesis, and Tectonic Implication of Magmatic Rocks from Yanhu in Northern Lhasa Terrane, Tibet (Dissertation). China University of Geosciences, Beijing, 1-109 (in Chinese with English abstract).
      Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345.
      Wang, B.D., Xu, J.F., Zeng, Q.G., et al., 2007. Geochemistry and Genesis of Lhaguo Tso Ophiolite in South of Gerze Area, Center Tibet. Acta Petrologica Sinica, 23(6):1521-1530 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200706025.htm
      Wang, L.Q., Wang, Y., Danzhen, W.X., et al., 2017. A Tentative Discussion on Metallogeny of the Main Magmatic-Hydrothermal Ore Deposits in the Western Bangong Co-Nujiang Metallogenic Belt, Tibet. Acta Geoscientica Sinica, 38(5):615-626 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201705003.htm
      Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. doi: 10.1016/0009-2541(77)90057-2
      Wu, H., Li, C., Hu, P.Y., et al., 2014. The Discovery of Early Cretaceous Bimodal Volcanic Rocks in the Dachagou Area of Tibet and Its Significance. Geological Bulletin of China, 33(11):1804-1814 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201411016.htm
      Wu, H., Li, C., Xu, M.J., et al., 2015.Early Cretaceous Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet:Implications for Slab Roll-Back and Subsequent Slab Break-off of the Lithosphere of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 97:51-66. doi: 10.1016/j.jseaes.2014.10.014
      Wu, J.L., Yin, X.K., Liu, W., et al., 2019. The Discovery of Nb-Rich Volcanic Rock of the Qushenla Formation in Yema Area of the Western Segment of Bangong Co-Nujiang Suture in Tibet and Its Implications. Geological Bulletin of China, 38(4):471-483 (in Chinese with English abstract).
      Xie, W., Xu, Y.G., Chen, Y.B., et al., 2016. High-Alumina Basalts from the Bogda Mountains Suggest an Arc Setting for Chinese Northern Tianshan during the Late Carboniferous. Lithos, 256:165-181. https://www.sciencedirect.com/science/article/pii/S0024493716300329
      Xu, M.J., 2014. The Evolution of Shiquanhe-Yongzhu-Jiali Ophiolitic Mélange Belt, Tibetan Plateau (Dissertation). Jilin University, Changchun, 1-152 (in Chinese with English abstract).
      Yang, J., Wang, J.R., Zhang, Q., et al., 2016a. Back-Arc Basin Basalt (BABB) Data Mining:Comparison with MORB and IAB. Advances in Earth Science, 31(1):66-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201601006.htm
      Yang, J., Wang, J.R., Zhang, Q., et al., 2016b. Global IAB Data Excavation:The Performance in Basalt Discrimination Diagrams and Preliminary Interpretation. Geological Bulletin of China, 35(12):1937-1949 (in Chinese with English abstract).
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28:211-280. doi: 10.1146/annurev.earth.28.1.211
      Yin, T., Li, W., Yin, X.K., et al., 2019. The Early Cretaceous Granodiorites in the Aweng Co Area, Tibet:Evidence for the Subduction of the Bangong Co-Nujiang River Oceanic Crust to the South. Geology in China, 46(5):1105-1115 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201905012.htm
      Yin, T., Yin, X.K., Qin Y.L., et al., 2020. Geochemistry of Basalt and Andesitic Porphyrite in Longbaesang Area, Tibet:Implications for the Tectonic Evolution of the Bangonghu-Nujiang Ocean. Earth Science, 45(7):2345-2359 (in Chinese with English abstract).
      Yuan, Y.J., Yin, Z.X., Liu, W.L., et al., 2015. Tectonic Evolution of the Meso-Tethys in the Western Segment of Bangognhu-Nujiang Suture Zone:Insights from Geochemistry and Gecchronology of the Lagkor Tso Ophilite. Acta Geologica Sinica, 89(2):369-388. doi: 10.1111/1755-6724.12436
      Zeng, M., Chen, J.P., Wei, C.C., 2017. The Mugagangri Group is an Accretionary Complex Accreted onto the South Margin of Qiangtang. Earth Science Frontiers, 24(5):207-217 (in Chinese with English abstract).
      Zeng, X.W., Wang, M., Fan, J.J., et al., 2018. Geochemistry and Geochronology of Gabbros from the Asa Ophiolite, Tibet:Implications for the Early Cretaceous Evolution of the Meso-Tethys Ocean. Lithos, 320-321:192-206. doi: 10.1016/j.lithos.2018.09.013
      Zhang, K.J., Tang, X.C., 2009. Eclogites in the Interior of the Tibetan Plateau and Their Geodynamic Implications. Chinese Science Bulletin, 54:2556-2567. doi: 10.1360/csb2009-54-17-2556
      Zhang, K.J., Xia, B., Zhang, Y.X., et al., 2014. Central Tibetan Meso-Tethyan Oceanic Plateau. Lithos, 210-211:278-288. doi: 10.1016/j.lithos.2014.09.004
      Zhang, L.L., Zhu, D.C., Zhao, Z.D., et.al., 2011. Early Cretaceous Granitoids in Xainza, Tibet:Evidence of Slab Break-off. Acta Petrological Sinica, 27(7):1938-1948 (in Chinese with English abstract).
      Zhang, S.Q., Qi, X.X., Wei, C., et al., 2018. Geochemistry, Zircon U-Pb Dating and Hf Isotope Compositions of Early Cretaceous Magmatic Rocks in Yongzhu Area, Northern Lhasa Terrane, Tibet, and Its Geological Significance. Earth Science, 43(4):1085-1109 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201804011.htm
      Zheng, F., Dai, L.Q., Zhao, Z.F., et al., 2020. Syn-Exhumation Magmatism during Continental Collision:Geochemical Evidence from the Early Paleozoic Fushui Mafic Rocks in the Qinling Orogen, Central China. Lithos, 352-353:70-88. https://doi.org/10.1016/j.lithos.2019.105318
      Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245:7-17. doi: 10.1016/j.lithos.2015.06.023
      Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3):534-546 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603002.htm
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301:241-255. doi: 10.1016/j.epsl.2010.11.005
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23:1429-1454. doi: 10.1016/j.gr.2012.02.002
      杜道德, 曲晓明, 王根厚, 等, 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7):1993-2002. http://www.cqvip.com/QK/94579X/201107/38831401.html
      范建军, 张博川, 刘海永, 等, 2019.班公湖-怒江洋早-中侏罗世洋内俯冲:来自洞错蛇绿岩的证据.岩石学报, 35(10):3048-3064. http://d.wanfangdata.com.cn/periodical/ysxb98201910007
      康志强, 许继峰, 王保弟, 等, 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?.岩石学报, 26(10):3106-3116. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201010022.htm
      李曙光, 1993.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图.岩石学报, 9(2):146-157. http://www.cnki.com.cn/Article/CJFD1993-YSXB199302004.htm
      隋清霖, 2014.西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义.北京: 中国地质大学, 1-109.
      王保弟, 许继峰, 曾庆高, 等, 2007.西藏改则地区拉果错蛇绿岩地球化学特征及成因.岩石学报, 23(6):1521-1530. http://d.wanfangdata.com.cn/Periodical/ysxb98200706026
      王立强, 王勇, 旦真王修, 等, 2017.班公湖-怒江成矿带西段主要岩浆热液型矿床成矿特征初探.地球学报, 38(5):615-626. http://www.cnki.com.cn/Article/CJFDTotal-DQXB201705003.htm
      吴浩, 李才, 胡培远, 等, 2014.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义.地质通报, 33(11):1804-1814. http://d.wanfangdata.com.cn/Periodical/zgqydz201411016
      吴建亮, 尹显科, 刘文, 等, 2019.西藏班公湖-怒江缝合带西段野马去申拉组富Nb火山岩的发现及其指示意义.地质通报, 38(4):471-483. http://www.cqvip.com/QK/95894A/201904/7001912698.html
      徐梦婧, 2014.青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化.长春: 吉林大学, 1-152.
      杨婧, 王金荣, 张旗, 等, 2016a.弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比.地球科学进展, 31(1):66-77. http://www.cqvip.com/QK/94287X/201601/668311917.html
      杨婧, 王金荣, 张旗, 等, 2016b.全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释.地质通报, 35(12):1937-1949. http://www.cqvip.com/QK/95894A/201612/7000084358.html
      尹滔, 李威, 尹显科, 等, 2019.西藏阿翁错地区早白垩世花岗闪长岩——班公湖-怒江洋壳南向俯冲消减证据.中国地质, 46(5):1105-1115. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201905012.htm
      尹滔, 尹显科, 秦宇龙, 等, 2020.西藏隆巴俄桑地区玄武岩与安山玢岩的地球化学:对班公湖-怒江洋构造演化的启示.地球科学, 45(7):2345-2359. doi: 10.3799/dqkx.2020.045
      曾敏, 陈建平, 位冲冲, 2017.木嘎岗日岩群是羌塘南缘的增生楔杂岩.地学前缘, 24(5):207-217. http://d.wanfangdata.com.cn/Periodical/dxqy201705020
      张亮亮, 朱弟成, 赵志丹, 等, 2011.西藏申扎早白垩世花岗岩类:板片断离的证据.岩石学报, 27(7):1938-1948. http://d.wanfangdata.com.cn/Periodical/ysxb98201107003
      张诗启, 戚学祥, 韦诚, 等, 2018.拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义.地球科学, 43(4):1085-1109. doi: 10.3799/dqkx.2018.711
      朱弟成, 潘桂棠, 莫宣学, 等, 2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9):1312-1328. http://d.wanfangdata.com.cn/Periodical_dizhixb200609008.aspx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (1342) PDF downloads(65) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return