Citation: | Yin Tao, Zhang Wei, Yin Xianke, Pei Yalun, 2020. Zircon U-Pb Ages, Geochemistry and Geological Significance of Diorite Porphyrite in Jiangma Area, Tibet. Earth Science, 45(11): 4128-4142. doi: 10.3799/dqkx.2020.136 |
Anderson, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X
|
Ariskin, A.A., 1999. Phase Equilibria Modeling in Igneous Petrology:Use of COMAGMAT Model for Simulating Fractionation of Ferro-Basaltic Magmas and the Ggenesis of High-Alumina Basalt. Journal of Volcanology and Geothermal Research, 90:115-162. doi: 10.1016/S0377-0273(99)00022-0
|
Bartels, K.S., Kinzler, R.J., Grove, T.L., 1991. High Pressure Phase Relations of Primitive High-Alumina Basalt from Medicine Lake Volcano, Northern California. Contributions to Mineralogy and Petrology, 108:253-270. doi: 10.1007/BF00285935
|
Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000. Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 165(3-4):197-213. doi: 10.1016/S0009-2541(99)00173-4
|
Bebout, G.E., 2007. Metamorphic Chemical Geodynamics of Subduction Zones. Earth and Planetary Science Letters, 260:373-393. doi: 10.1016/j.epsl.2007.05.050
|
Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114.
|
Brophy, J.G., Marsh, B.D., 1986. On the Origin of High-Alumina Arc Basalt and the Mechanics of Melt Extraction. Journal of Petrology, 27:763-789. doi: 10.1093/petrology/27.4.763
|
Crawford, A.J., Falloon, T.J., Eggins, S., 1987. The Origin of Island Arc High Alumina Basalts. Contributions to Mineralogy and Petrology, 97:417-430. doi: 10.1007/BF00372004
|
Dai, L.Q., Zheng, F., Zhao, Z. F., et al., 2018. Geochemical Insights into the Lithology of Mantle Sources for Cenozoic Alkali Basalts in West Qinling, China. Lithos, 302-303:86-98. doi: 10.1016/j.lithos.2017.12.013
|
Du, D.D., Qu, X.M., Wang, G.H., et al., 2011. Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Arc Granites. Acta Petrologica Sinica, 27(7):1993-2002 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201107009.htm
|
Eason, D., Sinton, J., 2006. Origin of High-Al N-MORB by Fractional Crystallization in the Upper Mantle beneath the Galápagos Spreading Center. Earth and Planetary Science Letters, 252:423-436. doi: 10.1016/j.epsl.2006.09.048
|
Elliott, T., 2003. Tracers of the Slab. In: Eiler, J., ed., Inside the Subduction Factory. American Geophysical Union Geophysical Monograph, Washington, D.C., 23-45.
|
Fan, J.J., Li, C., Xie, C.M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet:Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of Neo-Tethys. Int. Geol. Rev., 56(12):1504-1520. doi: 10.1080/00206814.2014.947639
|
Fan, J.J., Zhang, B.C., Liu, H.Y., et al., 2019. Early-Middle Jurassic Intra-Oceanic Subduction of the Bangong-Nujiang Oceanic Lithosphere:Evidence of the Dong Co Ophiolite. Acta Petrologica Sinica, 35(10):3048-3064 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.06
|
Fang, W., Dai, L.Q., Zheng, Y.F., et al., 2020. Tectonic Transition from Oceanic Subduction to Continental Collision:New Geochemical Evidence from Early-Middle Triassic Mafic Igneous Rocks in Southern Liaodong Peninsula, East-Central China. Geological Society of America Bulletin. https://doi.org/10.1130/B35278.1
|
Floyd, P.A., Winchester, J.A., 1975. Magma Type and Tectonic Setting Discrimination Using Immobile Elements. Earth and Planetary Science Letters, (27):211-218. https://www.sciencedirect.com/science/article/pii/0012821X7590031X
|
Geng, Q.R., Zhang, Z., Peng, Z.M., et al., 2016. Jurassic-Cretaceous Granitoids and Related Tectono-Metallogenesis in the Zapug-Duobuza Arc, Western Tibet. Ore Geology Reviews, 77:163-175. doi: 10.1016/j.oregeorev.2016.02.018
|
Gribble, R.F., Stern, R.J., Newman, S., et al., 1998. Chemical and Isotopic Composition of Lavas from the Northern Mariana Trough:Implications for Magmagenesis in Back-Arc Basins. Journal of Petrology, 39(1):125-154. doi: 10.1093/petroj/39.1.125
|
Grove, T.L., Till, C.B., Krawczynski, M.J., 2012. The Role of H2O in Subduction Zone Magmatism. Annual Review of Earth and Planetary Sciences, 40:413-439. doi: 10.1146/annurev-earth-042711-105310
|
Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block:Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10):3106-3116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201010022.htm
|
Kapp, P., DeCelles, P.G., Gehrels, G.E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8):917-933. doi: 10.1130/B26033.1
|
Kelemen, P., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs with Emphasis on Primitive Andesite and Lower Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdan, 3: 612-615, 626-627.
|
Kuno, H., 1960. High-Alumina Basalt. Journal of Petrology, 1:121-145. doi: 10.1093/petrology/1.2.121
|
Le Maitre, R.W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 1-193.
|
Li, G.M., Qin, K.Z., Li, J.X., et al., 2017. Cretaceous Magmatism and Metallogeny in the Bangong-Nujiang Metallogenic Belt, Central Tibet:Evidence from Petrogeochemistry, Zircon U-Pb Ages, and Hf-O Isotopic Compositions. Gondwana Research, 41:110-127. doi: 10.1016/j.gr.2015.09.006
|
Li, S.G., 1993. Ba-Th-Nb-La Diagrams Used to Identify Tectonic Environments of Ophiolite. Acta Petrologica Sinica, 9(2):146-157 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199302004.htm
|
Li, Y., He, J., Han, Z., et al., 2016. Late Jurassic Sodium-Rich Adakitic Intrusive Rocks in the Southern Qiangtang Terrane, Central Tibet, and Their Implications for the Bangong-Nujiang Ocean Subduction. Lithos, 245:34-46. doi: 10.1016/j.lithos.2015.10.014
|
Liu, D.L., Shi, R.D., Ding, L., et al., 2018. Late Cretaceous Transition from Subduction to Collision along the Bangong-Nujiang Tethys:New Volcanic Constraints from Central Tibet. Lithos, 296-299:452-470. doi: 10.1016/j.lithos.2017.11.012
|
Liu, W.L., Xia, B., Zhong, Y., et al., 2014. Age and Composition of the Rebang Co and Julu Ophiolites, Central Tibet:Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 56(4):430-447. doi: 10.1080/00206814.2013.873356
|
Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082
|
Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55:1535-1546. doi: 10.1007/s11434-010-3052-4
|
Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004
|
Ludwig, K.R., 2003.User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, Berkeley, 4:1-71. https://searchworks.stanford.edu/view/6739593
|
Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56:207-218. doi: 10.1016/0009-2541(86)90004-5
|
Olsen, K.H., 1995. Continental Rifts:Evolution, Structure, Tectonics. Elsevier, Amsterdam, 1-466.
|
Ozerov, A.Y., 2000. The Evolution of High-Alumina Basalts of the Klyuchevskoy Volcano, Kamchatka, Russia, Based on Microprobe Analyses of Mineral Inclusions. Journal of Volcanology and Geothermal Research, 95:65-79. doi: 10.1016/S0377-0273(99)00118-3
|
Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53:3-14. doi: 10.1016/j.jseaes.2011.12.018
|
Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19:290-300. doi: 10.1016/0012-821X(73)90129-5
|
Pearce, J.A., Stern, R.J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Geophys. Monogr. Ser. AGU, Washington, D. C., 63-86.
|
Ringwood, A.E., 1990. Slab-Mantle Interactions:Petrogenesis of in Traplate Magmas and Structure of the Upper Mantle. Chemical Geology, 82:187-207. doi: 10.1016/0009-2541(90)90081-H
|
Sandeman, H.A., Hanmer, S., Tella, S., et al., 2006. Petrogenesis of Neoar-Chaean Volcanic Rocks of the MacQuoid Supracrustal Belt:A Backarc Setting for the Northwestern Hearne Subdomain, Western Churchill Province, Canada. Precambrian Research, 144(1):140-165.
|
Shervais, J.W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolithic Lavas. Earth & Planetary Science Letters, 59(1):101-118. https://www.sciencedirect.com/science/article/pii/0012821X82901200
|
Sui, Q.L., 2014. Chronology, Petrogenesis, and Tectonic Implication of Magmatic Rocks from Yanhu in Northern Lhasa Terrane, Tibet (Dissertation). China University of Geosciences, Beijing, 1-109 (in Chinese with English abstract).
|
Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345.
|
Wang, B.D., Xu, J.F., Zeng, Q.G., et al., 2007. Geochemistry and Genesis of Lhaguo Tso Ophiolite in South of Gerze Area, Center Tibet. Acta Petrologica Sinica, 23(6):1521-1530 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200706025.htm
|
Wang, L.Q., Wang, Y., Danzhen, W.X., et al., 2017. A Tentative Discussion on Metallogeny of the Main Magmatic-Hydrothermal Ore Deposits in the Western Bangong Co-Nujiang Metallogenic Belt, Tibet. Acta Geoscientica Sinica, 38(5):615-626 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201705003.htm
|
Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. doi: 10.1016/0009-2541(77)90057-2
|
Wu, H., Li, C., Hu, P.Y., et al., 2014. The Discovery of Early Cretaceous Bimodal Volcanic Rocks in the Dachagou Area of Tibet and Its Significance. Geological Bulletin of China, 33(11):1804-1814 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201411016.htm
|
Wu, H., Li, C., Xu, M.J., et al., 2015.Early Cretaceous Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet:Implications for Slab Roll-Back and Subsequent Slab Break-off of the Lithosphere of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 97:51-66. doi: 10.1016/j.jseaes.2014.10.014
|
Wu, J.L., Yin, X.K., Liu, W., et al., 2019. The Discovery of Nb-Rich Volcanic Rock of the Qushenla Formation in Yema Area of the Western Segment of Bangong Co-Nujiang Suture in Tibet and Its Implications. Geological Bulletin of China, 38(4):471-483 (in Chinese with English abstract).
|
Xie, W., Xu, Y.G., Chen, Y.B., et al., 2016. High-Alumina Basalts from the Bogda Mountains Suggest an Arc Setting for Chinese Northern Tianshan during the Late Carboniferous. Lithos, 256:165-181. https://www.sciencedirect.com/science/article/pii/S0024493716300329
|
Xu, M.J., 2014. The Evolution of Shiquanhe-Yongzhu-Jiali Ophiolitic Mélange Belt, Tibetan Plateau (Dissertation). Jilin University, Changchun, 1-152 (in Chinese with English abstract).
|
Yang, J., Wang, J.R., Zhang, Q., et al., 2016a. Back-Arc Basin Basalt (BABB) Data Mining:Comparison with MORB and IAB. Advances in Earth Science, 31(1):66-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201601006.htm
|
Yang, J., Wang, J.R., Zhang, Q., et al., 2016b. Global IAB Data Excavation:The Performance in Basalt Discrimination Diagrams and Preliminary Interpretation. Geological Bulletin of China, 35(12):1937-1949 (in Chinese with English abstract).
|
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28:211-280. doi: 10.1146/annurev.earth.28.1.211
|
Yin, T., Li, W., Yin, X.K., et al., 2019. The Early Cretaceous Granodiorites in the Aweng Co Area, Tibet:Evidence for the Subduction of the Bangong Co-Nujiang River Oceanic Crust to the South. Geology in China, 46(5):1105-1115 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201905012.htm
|
Yin, T., Yin, X.K., Qin Y.L., et al., 2020. Geochemistry of Basalt and Andesitic Porphyrite in Longbaesang Area, Tibet:Implications for the Tectonic Evolution of the Bangonghu-Nujiang Ocean. Earth Science, 45(7):2345-2359 (in Chinese with English abstract).
|
Yuan, Y.J., Yin, Z.X., Liu, W.L., et al., 2015. Tectonic Evolution of the Meso-Tethys in the Western Segment of Bangognhu-Nujiang Suture Zone:Insights from Geochemistry and Gecchronology of the Lagkor Tso Ophilite. Acta Geologica Sinica, 89(2):369-388. doi: 10.1111/1755-6724.12436
|
Zeng, M., Chen, J.P., Wei, C.C., 2017. The Mugagangri Group is an Accretionary Complex Accreted onto the South Margin of Qiangtang. Earth Science Frontiers, 24(5):207-217 (in Chinese with English abstract).
|
Zeng, X.W., Wang, M., Fan, J.J., et al., 2018. Geochemistry and Geochronology of Gabbros from the Asa Ophiolite, Tibet:Implications for the Early Cretaceous Evolution of the Meso-Tethys Ocean. Lithos, 320-321:192-206. doi: 10.1016/j.lithos.2018.09.013
|
Zhang, K.J., Tang, X.C., 2009. Eclogites in the Interior of the Tibetan Plateau and Their Geodynamic Implications. Chinese Science Bulletin, 54:2556-2567. doi: 10.1360/csb2009-54-17-2556
|
Zhang, K.J., Xia, B., Zhang, Y.X., et al., 2014. Central Tibetan Meso-Tethyan Oceanic Plateau. Lithos, 210-211:278-288. doi: 10.1016/j.lithos.2014.09.004
|
Zhang, L.L., Zhu, D.C., Zhao, Z.D., et.al., 2011. Early Cretaceous Granitoids in Xainza, Tibet:Evidence of Slab Break-off. Acta Petrological Sinica, 27(7):1938-1948 (in Chinese with English abstract).
|
Zhang, S.Q., Qi, X.X., Wei, C., et al., 2018. Geochemistry, Zircon U-Pb Dating and Hf Isotope Compositions of Early Cretaceous Magmatic Rocks in Yongzhu Area, Northern Lhasa Terrane, Tibet, and Its Geological Significance. Earth Science, 43(4):1085-1109 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201804011.htm
|
Zheng, F., Dai, L.Q., Zhao, Z.F., et al., 2020. Syn-Exhumation Magmatism during Continental Collision:Geochemical Evidence from the Early Paleozoic Fushui Mafic Rocks in the Qinling Orogen, Central China. Lithos, 352-353:70-88. https://doi.org/10.1016/j.lithos.2019.105318
|
Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245:7-17. doi: 10.1016/j.lithos.2015.06.023
|
Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3):534-546 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603002.htm
|
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301:241-255. doi: 10.1016/j.epsl.2010.11.005
|
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23:1429-1454. doi: 10.1016/j.gr.2012.02.002
|
杜道德, 曲晓明, 王根厚, 等, 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7):1993-2002. http://www.cqvip.com/QK/94579X/201107/38831401.html
|
范建军, 张博川, 刘海永, 等, 2019.班公湖-怒江洋早-中侏罗世洋内俯冲:来自洞错蛇绿岩的证据.岩石学报, 35(10):3048-3064. http://d.wanfangdata.com.cn/periodical/ysxb98201910007
|
康志强, 许继峰, 王保弟, 等, 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?.岩石学报, 26(10):3106-3116. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201010022.htm
|
李曙光, 1993.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图.岩石学报, 9(2):146-157. http://www.cnki.com.cn/Article/CJFD1993-YSXB199302004.htm
|
隋清霖, 2014.西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义.北京: 中国地质大学, 1-109.
|
王保弟, 许继峰, 曾庆高, 等, 2007.西藏改则地区拉果错蛇绿岩地球化学特征及成因.岩石学报, 23(6):1521-1530. http://d.wanfangdata.com.cn/Periodical/ysxb98200706026
|
王立强, 王勇, 旦真王修, 等, 2017.班公湖-怒江成矿带西段主要岩浆热液型矿床成矿特征初探.地球学报, 38(5):615-626. http://www.cnki.com.cn/Article/CJFDTotal-DQXB201705003.htm
|
吴浩, 李才, 胡培远, 等, 2014.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义.地质通报, 33(11):1804-1814. http://d.wanfangdata.com.cn/Periodical/zgqydz201411016
|
吴建亮, 尹显科, 刘文, 等, 2019.西藏班公湖-怒江缝合带西段野马去申拉组富Nb火山岩的发现及其指示意义.地质通报, 38(4):471-483. http://www.cqvip.com/QK/95894A/201904/7001912698.html
|
徐梦婧, 2014.青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化.长春: 吉林大学, 1-152.
|
杨婧, 王金荣, 张旗, 等, 2016a.弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比.地球科学进展, 31(1):66-77. http://www.cqvip.com/QK/94287X/201601/668311917.html
|
杨婧, 王金荣, 张旗, 等, 2016b.全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释.地质通报, 35(12):1937-1949. http://www.cqvip.com/QK/95894A/201612/7000084358.html
|
尹滔, 李威, 尹显科, 等, 2019.西藏阿翁错地区早白垩世花岗闪长岩——班公湖-怒江洋壳南向俯冲消减证据.中国地质, 46(5):1105-1115. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201905012.htm
|
尹滔, 尹显科, 秦宇龙, 等, 2020.西藏隆巴俄桑地区玄武岩与安山玢岩的地球化学:对班公湖-怒江洋构造演化的启示.地球科学, 45(7):2345-2359. doi: 10.3799/dqkx.2020.045
|
曾敏, 陈建平, 位冲冲, 2017.木嘎岗日岩群是羌塘南缘的增生楔杂岩.地学前缘, 24(5):207-217. http://d.wanfangdata.com.cn/Periodical/dxqy201705020
|
张亮亮, 朱弟成, 赵志丹, 等, 2011.西藏申扎早白垩世花岗岩类:板片断离的证据.岩石学报, 27(7):1938-1948. http://d.wanfangdata.com.cn/Periodical/ysxb98201107003
|
张诗启, 戚学祥, 韦诚, 等, 2018.拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义.地球科学, 43(4):1085-1109. doi: 10.3799/dqkx.2018.711
|
朱弟成, 潘桂棠, 莫宣学, 等, 2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9):1312-1328. http://d.wanfangdata.com.cn/Periodical_dizhixb200609008.aspx
|