• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 5
    May  2021
    Turn off MathJax
    Article Contents
    Huang Yubing, Zhao Tiantian, Xiang Wu, Zhao Yunpeng, Liu Yang, 2021. Stability of Organic Iron Complexes in Dajiuhu Peats and Its Ecological Significance. Earth Science, 46(5): 1862-1870. doi: 10.3799/dqkx.2020.149
    Citation: Huang Yubing, Zhao Tiantian, Xiang Wu, Zhao Yunpeng, Liu Yang, 2021. Stability of Organic Iron Complexes in Dajiuhu Peats and Its Ecological Significance. Earth Science, 46(5): 1862-1870. doi: 10.3799/dqkx.2020.149

    Stability of Organic Iron Complexes in Dajiuhu Peats and Its Ecological Significance

    doi: 10.3799/dqkx.2020.149
    • Received Date: 2020-11-07
    • Publish Date: 2021-05-15
    • In order to study the complexing stability of organic iron complexes from peat, the stability of DOM-Fe2+, Fe3+ in different molecular weights of Dajiuhu peatland was determined by potentiometric titration and fluorescence quenching titration. There are obvious differences between the results of potentiometric titration (4.0-6.1) and fluorescence quenching titration (1.5-4.1), which can be explained by the deprotonation of OH in high pH value and the oxidation of Fe2+ during the experiments. Potentiometric titration is suitable for studying the complexing stability of different molecular weights of DOM-Fe; the pH would not change during the experiment using fluorescence quenching titration method. Thus, the fluorescence method can be well applied to the element of variable valency. The results show that the complexing stability constants of DOM-Fe3+ is higher than that of Fe2+, and that of low-molecular-weight DOM with Fe2+ and Fe3+ is higher. The experiment indicates that high stability of DOM-Fe in peat, and relatively low-molecular-weight DOM has stronger ability to complex iron. Even Fe2+ is oxidized to Fe3+, it can still complex with DOM stably, which is conducive to the output of terrestrial dissolved iron to aquatic ecosystem. The complexing stability of iron organic complexes from peat will also affect the bioavailability of iron.

       

    • loading
    • Baker, A., 2001. Fluorescence Excitation-Emission Matrix Characterization of Some Sewage-Impacted Rivers. Environmental Science & Technology, 35(5): 948-953. https://doi.org/10.1021/es000177t http://europepmc.org/abstract/med/11351540
      Bao, X. M., 1987. Stability Constants of Fe(Ⅱ)- and Mn(Ⅱ)-Complexes in Relation to the Molecular Weight of Complexing Agents. Acta Pedologica Sinica, 24(4): 313-317 (in Chinese with English abstract). http://pedologica.issas.ac.cn/trxben/ch/reader/view_abstract.aspx?file_no=19870403&flag=1
      Bao, X. M., Yu, T. R., 1978. Studies on Oxidation-Reduction Processes in Panddy Soils Ⅶ: Characterization of the Water-Soluble Ferrous Iron. Acta Pedologica Sinica, 15(1): 13-22 (in Chinese with English abstract).
      Biller, D. V., Bruland, K.W., 2014. The Central California Current Transition Zone: A Broad Region Exhibiting Evidence for Iron Limitation. Progress in Oceanography, 120(1): 370-382. https://doi.org/10.1016/j.pocean.2013.11.002 http://www.sciencedirect.com/science/article/pii/S0079661113002218
      Boguta, P., Sokołowska, Z., 2016. Interactions of Zn(Ⅱ) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties. PLoS One, 11(4): e0153626. https://doi.org/10.1371/journal.pone.0153626
      Bundy, R. M., Abdulla, H. A. N., Hatcher, P. G., et al., 2015. Iron-Binding Ligands and Humic Substances in the San Francisco Bay Estuary and Estuarine-Influenced Shelf Regions of Coastal California. Marine Chemistry, 173: 183-194. doi: 10.1016/j.marchem.2014.11.005
      Cabaniss, S. E., 1992. Synchronous Fluorescence Spectra of Metal-Fulvic Acid Complexes. Environmental Science & Technology, 26(6): 1133-1139. https://doi.org/10.1021/es50002a018 doi: 10.1021/es50002a018
      Campitelli, P. A., Velasco, M. I., Ceppi, S. B., 2006. Chemical and Physicochemical Characteristics of Humic Acids Extracted from Compost, Soil and Amended Soil. Talanta, 69(5): 1234-1239. https://doi.org/10.1016/j.talanta.2005.12.048
      Chen, W., Westerhoff, P., Leenheer, J. A., et al., 2003. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24): 5701-5710. https://doi.org/10.1021/es034354c doi: 10.1021/es034354c
      Coble, P. G., 1996. Characterization of Marine and Terrestrial DOM in Seawater Using Excitation-Emission Matrix Spectroscopy. Marine Chemistry, 51(4): 325-346. https://doi.org/10.1016/0304-4203(95)00062-3
      Elkins, K. M., Nelson, D. J., 2001. Fluorescence and FT-IR Spectroscopic Studies of Suwannee River Fulvic Acid Complexation with Aluminum, Terbium and Calcium. Journal of Inorganic Biochemistry, 87(1/2): 81-96. https://doi.org/10.1016/s0162-0134(01)00318-x http://onlinelibrary.wiley.com/resolve/reference/PMED?id=11709217
      Fu, P., Wu, F., Liu, C., et al., 2007. Fluorescence Characterization of Dissolved Organic Matter in an Urban River and Its Complexation with Hg (Ⅱ). Applied Geochemistry, 22(8): 1668-1679. https://doi.org/10.1016/j.apgeochem.2007.03.041
      Fu, P. Q., Liu, C. Q., Wu, F. C., 2004. Three-Dimensional Excitation Emission Matrix Fluorescence Spectroscopic Characterization of the Complexation between Mercury (Ⅱ) and Dissolved Organic Matter. Enviromental Science, 25(6): 140-144 (in Chinese with English abstract) http://www.ncbi.nlm.nih.gov/pubmed/15759899
      Gondar, D., Lopez, R., Fiol, S., et al., 2005. Characterization and Acid-Base Properties of Fulvic and Humic Acids Isolated from Two Horizons of an Ombrotrophic Peat Bog. Geoderma, 126(3-4): 367-374. doi: 10.1016/j.geoderma.2004.10.006
      Han, N., Thompson, M.L., 1999. Copper-Binding Ability of Dissolved Organic Matter Derived from Anaerobically Digested Biosolids. Journal of Environment Quality, 28(3): 939. https://doi.org/10.2134/jeq1999.00472425002800030026x http://dl.sciencesocieties.org/publications/jeq/abstracts/28/3/JEQ0280030939
      Hernandez, D., Plaza, C., Senesi, N., et al., 2006. Detection of Copper (Ⅱ) and Zinc (Ⅱ) Binding to Humic Acids from Pig Slurry and Amended Soils by Fluorescence Spectroscopy. Environmental Pollution, 143(2): 212-220. https://doi.org/10.1016/j.envpol.2005.11.038
      Huang, J. L., Sun, D. W., Ma, X. L., et al., 1992. Studies on Protonation Constants and Coordination Compounds Stability Constants of Tannins. Journal of Nanjing Forestry University, 16(1): 13-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJLY199201002.htm
      Huang, X. Y., Zhang, Z. Q., Wang, H. M., et al., 2017. Overview on Critical Zone Observatory at Dajiuhu Peatland, Shennongjia. Earth Science, 42(6): 1026-1038 (in Chinese with English abstract).
      Janoš, P., Kříženecká, S., Madronová, L., 2008. Acid-Base Titration Curves of Solid Humic Acids. Reactive and Functional Polymers, 68(1): 242-247. doi: 10.1016/j.reactfunctpolym.2007.09.005
      Kondo, Y., Takeda, S., Furuya, K., 2012. Distinct Trends in Dissolved Fe Speciation between Shallow and Deep Waters in the Pacific Ocean. Marine Chemistry, 134-135: 18-28. https://doi.org/10.1016/j.marchem.2012.03.002
      Krachler, R., Jirsa, F., Ayromlou, S., 2005. Factors Influencing the Dissolved Iron Input by River Water to the Open Ocean. Biogeosciences Discussions, 2(3): 311-315. https://doi.org/10.5194/bg-2-311-2005
      Kuhn, K. M., Maurice, P. A., Neubauer, E., et al., 2014. Accessibility of Humic-Associated Fe to a Microbial Siderophore: Implications for Bioavailability. Environmental Science & Technology, 48(2): 1015-1022. https://doi.org/10.1021/es404186v doi: 10.1021/es404186v
      Lu, X., Jaffe, R., 2001. Interaction between Hg (Ⅱ) and Natural Dissolved Organic Matter: A Fluorescence Spectroscopy Based Study. Water Research, 35(7): 1793-1803. https://doi.org/10.1016/S0043-1354(00)00423-1
      Morel, F.M.M., Hudson, R.J.M., Price, N.M., 1991. Limitation of Productivity by Trace Metals in the Sea. Limnology and Oceanography, 36(8): 1742-1755. https://doi.org/10.4319/lo.1991.36.8.1742
      Orlowska, E., Roller, A., Pignitter, M., et al., 2017. Synthetic Iron Complexes as Models for Natural Iron-Humic Compounds: Synthesis, Characterization and Algal Growth Experiments. The Science of the Total Environment, 577: 94-104. https://doi.org/10.1016/j.scitotenv.2016.10.109
      Qin, X. Q., Yao, B., Jin, L., et al., 2020. Characterizing Soil Dissolved Organic Matter in Typical Soils from China Using Fluorescence EEM-PARAFAC and UV-Visible Absorption. Aquatic Geochemistry, 26(1): 71-88. https://doi.org/10.1007/s10498-019-09366-7
      Shin, H.S., Hong, K.H., Lee, M.H., et al., 2001. Fluorescence Quenching of Three Molecular Weight Fractions of a Soil Fulvic Acid by UO2(Ⅱ). Talanta, 53(4): 791-799. https://doi.org/10.1016/s0039-9140(00)00567-1 doi: 10.1016/S0039-9140(00)00567-1
      Song, F., Wu, F., Guo, F., et al., 2017. Interactions between Stepwise-Eluted Sub-Fractions of Fulvic Acids and Protons Revealed by Fluorescence Titration Combined with EEM-PARAFAC. The Science of the Total Environment, 605/606: 58-65. https://doi.org/10.1016/j.scitotenv.2017.06.164
      Stevenson, F.J., Krastanov, S.A., Ardakani, M. S., 1973. Formation Constants of Cu2+ Complexes with Humic and Fulvic Acids. Geoderma, 9(2): 129-141. https://doi.org/10.1016/0016-7061(73)90048-7
      Wang, R. C., Wang, H. M., Xiang, X., et al., 2018a. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 29(4): 969-976. https://doi.org/10.1007/s12583-017-0818-5
      Wang, Y., Xiang, W., Yang, W., et al., 2018b. Photo-Stability of Iron-Phenolic Complexes Derived from Peatland Upon Irradiation in Waters under Simulated Sunlight. Chemical Geology, 485: 14-23. https://doi.org/10.1007/s12583-017-0818-5 doi: 10.1016/j.chemgeo.2018.03.016
      Wells, M.L., Zorkin, N.G., Lewis, A.G., 1983. The Role of Colloid Chemistry in Providing a Source of Iron to Phytoplankton. Journal of Marine Research, 41(4): 731-746. https://doi.org/10.1357/002224083788520478
      Witter, A.E., Luther, G.W., 1998. Variation in Fe-Organic Complexation with Depth in the Northwestern Atlantic Ocean as Determined Using a Kinetic Approach. Marine Chemistry, 62(3): 241-258. https://doi.org/10.1016/s0304-4203(98)00044-9 http://www.sciencedirect.com/science/article/pii/S0304420398000449
      Wu, F. C., Tanoue, E., 2001. Isolation and Partial Characterization of Dissolved Copper-Complexing Ligands in Streamwaters. Environmental Science & Technology, 35(18): 3646-3652. https://doi.org/10.1021/es0019023 http://www.ncbi.nlm.nih.gov/pubmed/11783640
      Wu, Y., Xiang, W., Fu, X. F., et al., 2016. Geochemical Interactions between Iron and Phenolics Originated from Peatland in Hani, China: Implications for Effective Transport of Iron from Terrestrial Systems to Marine. Environmental Earth Sciences, 75(4): 1-12. https://doi.org/10.1007/s12665-015-5189-6
      Yang, C. W., 2004. Complexation of Cu2+, Zn2+ and Fe2+ Metal Ions with Humic. Journal of Gansu Lianhe University, 18(3): 45-48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXJB200403016.htm
      Yang, W. L., Xiang, W., Wang, Y. L., et al., 2018. Disolution of Fe-Organic Asociations by Peatland-Derived Phenolic Acids and Its Environmental Significance. Earth Science, 43(11): 256-265 (in Chinese with English abstract).
      保学明, 1987. 铁锰络合物的稳定常数与有机络合剂的分子量的关系. 土壤学报, 24(4): 313-317. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198704003.htm
      保学明, 于天仁, 1978. 水稻土中氧化还原过程的研究: Ⅷ. 水溶态亚铁的区分. 土壤学报, 15(1): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB195704002.htm
      傅平青, 刘丛强, 吴丰昌, 2004. 三维荧光光谱研究溶解有机质与汞的相互作用. 环境科学, 25(6): 140-144. doi: 10.3321/j.issn:0250-3301.2004.06.029
      黄剑朎, 孙达旺, 马信亮, 等, 1992. 单宁加质子常数及其配合物稳定常数的研究. 南京林业大学学报(自然科学版), 16 (1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY199201002.htm
      黄咸雨, 张志麒, 王红梅, 等, 2017. 神农架大九湖泥炭湿地关键带监测进展. 地球科学, 42(6): 1026-1038. doi: 10.3799/dqkx.2017.081
      杨春文, 2004. 腐殖酸与Cu2+、Zn2+、Fe3+的络合作用. 甘肃联合大学学报, 18(3): 45-48. doi: 10.3969/j.issn.1672-691X.2004.03.016
      杨渭林, 向武, 汪亦柳, 等, 2018. 泥炭沼泽源酚酸对铁有机复合体的溶解作用及其环境意义. 地球科学, 43(11): 4056-4065. doi: 10.3799/dqkx.2018.289
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(4)

      Article views (905) PDF downloads(34) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return