• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 10
    Nov.  2020
    Turn off MathJax
    Article Contents
    Liu Huimin, Wang Yong, Yang Yonghong, Zhang Shun, 2020. Sedimentary Environment and Lithofacies of Fine-Grained Hybrid Sedimentary in Dongying Sag: A Case of Fine-Grained Sedimentary System of the Es4. Earth Science, 45(10): 3543-3555. doi: 10.3799/dqkx.2020.156
    Citation: Liu Huimin, Wang Yong, Yang Yonghong, Zhang Shun, 2020. Sedimentary Environment and Lithofacies of Fine-Grained Hybrid Sedimentary in Dongying Sag: A Case of Fine-Grained Sedimentary System of the Es4. Earth Science, 45(10): 3543-3555. doi: 10.3799/dqkx.2020.156

    Sedimentary Environment and Lithofacies of Fine-Grained Hybrid Sedimentary in Dongying Sag: A Case of Fine-Grained Sedimentary System of the Es4

    doi: 10.3799/dqkx.2020.156
    • Received Date: 2020-04-16
    • Publish Date: 2020-11-17
    • In order to predict the favorable lithofacies of shale fine-grained migmatite in the continental fault depressed lake basin and guide the optimization of shale oil and gas favorable targets, the sedimentary environment restoration and fine lithofacies characterization of shale fine-grained migmatite in the upper part of Es4 Formation in Dongying sag are systematically carried out by using the data of core, thin section, whole rock diffraction, element and paleontology, etc., revealing the sedimentary environment and its combination and division to the lithofacies. The results show that the depositional period of shale fine-grained migmatites in the upper part of Es4 Formation in Dongying depression is generally characterized by the transformation of climate from semi humid to humid, from bottom to top, it shows the process of increasing injection amount of clastic material source, increasing water depth, decreasing salinity and decreasing reducibility; the orderly and complex sedimentary environment controls the complexity of sedimentary fabric of shale fine-grained mixed rock to a certain extent, and then controls the diversity, combination and distribution regularity of fine-grained mixed rock facies. Based on the 4-terminal element division scheme of rock composition, sedimentary structure, calcareous structure and organic matter abundance, the shale fine-grained migmatites in the upper Es4 of Dongying depression are divided into 20 types, and the complex fine-grained migmatites are divided into different lithofacies. Under the condition of semi humid with less material source, the shallow lake strong reducing salt water environment mainly developed gypsum salt, organic laminated gypsum mudstone combined with organic laminated argillaceous limestone (dolomite) facies, while the semi deep lake strong reducing salt water environment mainly developed organic laminated microcrystalline argillaceous limestone combined with organic laminated lime mudstone frequent interbedded lithofacies. In the strong reducing and brackish water environment of the semi deep lake, there are frequent interbedded lithofacies combined with organic rich horizontal micrite and organic rich laminated limestone mudstone, while in the reducing and brackish water environment of the deep lake, there are mainly organic bedded argillaceous limestone with organic rich bedded calcareous mudstone lithofacies combination. Under the condition of moist and multi-source, the deep lake strong reducing brackish water environment mainly develops the frequent interbedded lithofacies combined with organic rich layered argillaceous limestone and organic rich layered calcareous mudstone, while the deep lake reducing brackish water environment mainly develops the organic rich layered calcareous mudstone mingled with organic rich layered argillaceous limestone lithofacies association.

       

    • loading
    • Bond, D.P.G., Wignall, P.B., 2010. Pyrite Framboid Study of Marine Permian-Triassic Boundary Sections: A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Geological Society of America Bulletin, 122(7-8): 1265-1279. https://doi.org/10.1130/b30042.1
      Cheng, X., 2000. Electronic Scanning Research on the Crystals of Continental Calcium Carbonate. Carsologica Sinica, 19(3): 206-211, 290-292(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr200003002
      Deng, H.W., Qian, K., 1990.The Genetic Types and Association Evolution of Deep Lacustrine Facies Mudstones. Acta Sedimentologica Sinica, 8(30):1-20(in Chinese with English abstract).
      Guan, Y.Z., 1992. The Element, Clay Mineral and Depositional Environment in Horqin Sand Land. Journal of Desert Research, 12(1): 9-15(in Chinese with English abstract). http://www.researchgate.net/publication/283969925_The_element_clay_mineral_and_depositional_environment_in_Horqin_Sand_Land
      Hou, J.F., 2008.Metallogenetic Characteristics and Regularities of Au-V Mineralization in Lower Cambrian Black Rock Series, Southern Qinling Moutain(Dissertation). Northwest University, Xi'an (in Chinese with English abstract).
      Jiang, Z.X., Liang, C., Wu, J., et al., 2013. Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Acta Petrolei Sinica, 34(6): 1031-1039(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201306001
      Krumbein, W.C., 1932. The Mechanical Analysis of Fine-Grained Sediments. Journal of Sedimentary Research, 2(3): 140-149. https://doi.org/10.2110/jsr.2.140
      Li, G.S., Wang, Y.B., Lu, Z.S., et al., 2014. Geobiological Processes of the Formation of Lacustrine Source Rock in Paleogene. Science China Earth Sciences, 44(6): 1206-1217(in Chinese). doi: 10.1007/s11430-013-4753-8
      Li, S.J., Wang, M.Z., Zheng, D.S., et al., 2003. Recovery of Climate of Palaeogene in Jiyang Depression of Shandong. Journal of Shandong University of Science and Technology(Natural Science), 22(3): 6-9(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdkjdxxb200303003
      Mei, B.W., Liu, X.J., 1980.The Distribution of Isoprenoid Alkanes in China's Crude Oil and Its Relation with the Geologic Environment. Oil & Gas Geology, 2(1):99-115(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT198002002.htm
      Shiah, F. K., Liu, K. K., Kao, S. J., et al., 2000. The Coupling of Bacterial Production and Hydrography in the Southern East China Sea: Spatial Patterns in Spring and Fall. Continental Shelf Research, 20(4-5): 459-477. https://doi.org/10.1016/s0278-4343(99)00081-3
      Su, X., Ding, X., Jiang, Z.X., et al., 2012. Using of Multi-microfossil Proxies for Reconstructing Quantitative Paleo-Water Depth during the Deposit Period of LST of Es4s in Dongying Depression. Earth Science Frontiers, 19(1): 188-199(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201201025
      Teng, X.H., Zhang, Z.G., Zheng, K., et al., 2019. Control of Tectonocs and Climate Coupling on the Paleogene Evaporites Deposition in the Jiangling Depression. Contributions to Geology and Mineral Resources Research, 34(4): 556-562(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201904008
      Tian, J.C., Zhang, X., 2016. Sedimentary Geochemistry. Geological Publishing House, Beijing(in Chinese).
      Wang, G.P., Zhang, Y.X., Zhai, Z.L., et al., 2006. Ratios of Specific Elements and Their Implications for Original Source of Sediments and Redox Condition within Sedimentation Profile of the Marsh in Semi-Arid Areas. Journal of Jilin University(Earth Science Edition), 36(3): 449-454(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200603022
      Wang, X.J., Wang, Z.X., Liu, X.Y., et al., 2008. Restoring Palaeo-Depth of the Ordos Basin by Using Uranium Response from GR Logging. Natural Gas Industry, 28(7): 46-48(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200807015.htm
      Wang, Y., Liu, H.M., Song, G.Q., et al., 2017. Carbonate Genesis and Geological Significance of Shale Hydrocarbon in Lacustrine Facies Mud Shale: A Case Study of Source Rocks in the Upper Submember of Member 4 and Lower Submember of Member 3 of Shahejie Formation, Dongying Sag. Acta Petrolei Sinica, 38(12): 1390-1400(in Chinese with English abstract).
      Wang, Y., Liu, H.M., Song, G.Q., et al., 2019. Lacustrine Shale Fine-Grained Sedimentary System in Jiyang Depression. Acta Petrolei Sinica, 40(4): 395-410(in Chinese with English abstract).
      Xie, X.N., Ye, M.S., Xu, C.G., et al., 2018. High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43(10): 3526-3539(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015
      Zheng, R.C., Liu, M.Q., 1999. Study on Palaeosalinity of Chang 6 Oil Reservoir Set in Ordos Basin. Oil & Gas Geology, 20(1): 20-25(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900650466
      Zhou, L.H., Chen, C.W., Han, G.M., et al., 2019. Geological Characteristics and Shale Oil Exploration Potential of Lower First Member of Shahejie Formation in Qikou Sag, Bohai Bay Basin. Earth Science, 44(8): 2736-2750(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201908018
      Zhou, L.H., Pu, X.G., Chen, C.W., et al., 2018. Concept, Characteristics and Prospecting Significance of Fine-Grained Sedimentary Oil Gas in Terrestrial Lake Basin: A Case from the Second Member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin. Earth Science, 43(10): 3625-3639(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810023.htm
      Zhou, L.H., Pu, X.G., Deng, Y., et al., 2016. Several Issues in Studies on Fine-Grained Sedimentary Rocks. Lithologic Reservoirs, 28(1): 6-15(in Chinese with English abstract).
      程星, 2000.陆相碳酸钙沉积试验的晶体扫描电镜研究.中国岩溶, 19(3): 206-211, 290-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr200003002
      邓宏文, 钱凯, 1990.深湖相泥岩的成因类型和组合演化.沉积学报, 8(3): 1-20. http://www.cnki.com.cn/Article/CJFD1990-CJXB199003000.htm
      关有志, 1992.科尔沁沙地的元素, 粘土矿物与沉积环境.中国沙漠, 12(1): 9-15. http://www.cnki.com.cn/Article/CJFDTotal-ZGSS199201001.htm
      侯俊富, 2008.南秦岭下寒武统黑色岩系中金-钒成矿特征及成矿规律(硕士学位论文).西安: 西北大学. http://cdmd.cnki.com.cn/Article/CDMD-10697-2008077084.htm
      姜在兴, 梁超, 吴靖, 等, 2013.含油气细粒沉积岩研究的几个问题.石油学报, 34(6): 1031-1039. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201306001
      李国山, 王永标, 卢宗盛, 等, 2014.古近纪湖相烃源岩形成的地球生物学过程.中国科学:地球科学, 44(6): 1206-1217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201406012
      李守军, 王明镇, 郑德顺, 等, 2003.山东济阳坳陷古近纪的气候恢复.山东科技大学学报(自然科学版), 22(3): 6-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdkjdxxb200303003
      梅博文, 刘希江, 1980.我国原油中异戊间二烯烷烃的分布及其与地质环境的关系.石油与天然气地质, 2(1): 99-115.
      苏新, 丁旋, 姜在兴, 等, 2012.用微体古生物定量水深法对东营凹陷沙四上亚段沉积早期湖泊水深再造.地学前缘, 19(1): 188-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201201025
      滕晓华, 张志高, 郑珂, 等, 2019.构造与气候对江陵凹陷古近系蒸发盐沉积的耦合作用.地质找矿论丛, 34(4): 556-562. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201904008
      田景春, 张翔, 2016.沉积地球化学.北京:地质出版社.
      王国平, 张玉霞, 翟正丽, 等, 2006.半干旱区沼泽沉积剖面特征元素比值及其物源、氧化还原变化信息.吉林大学学报(地球科学版), 36(3): 449-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200603022
      王学军, 王志欣, 刘显阳, 等, 2008.利用铀的测井响应恢复鄂尔多斯盆地古水深.天然气工业, 28(7): 46-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200807013
      王勇, 刘惠民, 宋国奇, 等, 2017.湖相泥页岩中碳酸盐成因及页岩油气地质意义:以东营凹陷沙河街组四段上亚段-沙河街组三段下亚段烃源岩为例.石油学报, 38(12): 1390-1400.
      王勇, 刘惠民, 宋国奇, 等, 2019.济阳坳陷泥页岩细粒沉积体系.石油学报, 40(4): 395-410. http://www.cqvip.com/QK/95667X/201904/83898866504849574852484850.html
      解习农, 叶茂松, 徐长贵, 等, 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43(10): 3526-3539. doi: 10.3799/dqkx.2018.277
      郑荣才, 柳梅青, 1999.鄂尔多斯盆地长6油层组古盐度研究.石油与天然气地质, 20(1): 20-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900650466
      周立宏, 陈长伟, 韩国猛, 等, 2019.渤海湾盆地歧口凹陷沙一下亚段地质特征与页岩油勘探潜力.地球科学, 44(8): 2736-2750. doi: 10.3799/dqkx.2019.112
      周立宏, 蒲秀刚, 陈长伟, 等, 2018.陆相湖盆细粒岩油气的概念、特征及勘探意义:以渤海湾盆地沧东凹陷孔二段为例.地球科学, 43(10): 3625-3639. doi: 10.3799/dqkx.2018.990
      周立宏, 蒲秀刚, 邓远, 等, 2016.细粒沉积岩研究中几个值得关注的问题.岩性油气藏, 28(1): 6-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc201601002
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (1897) PDF downloads(132) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return