• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 5
    May  2021
    Turn off MathJax
    Article Contents
    Yang Xin, Tang Juxing, Yang Zongyao, Xie Fuwei, Hao Jinyue, Wu Xin, Song Zhuangzhuang, 2021. Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization. Earth Science, 46(5): 1597-1612. doi: 10.3799/dqkx.2020.157
    Citation: Yang Xin, Tang Juxing, Yang Zongyao, Xie Fuwei, Hao Jinyue, Wu Xin, Song Zhuangzhuang, 2021. Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization. Earth Science, 46(5): 1597-1612. doi: 10.3799/dqkx.2020.157

    Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization

    doi: 10.3799/dqkx.2020.157
    • Received Date: 2020-09-02
    • Publish Date: 2021-05-15
    • The genesis of the Late Cretaceous adakite in the Gangdese belt, Tibet, has been debated for decades, and research on the productivity of these intrusions is limited. To provide a further understanding of this issue, it presents zircon U-Pb data, geochemical and zircon trace element data of the biotite monzogranite from Sinongduo-Jiaduobu area, Xietongmen County, Tibet. New age data indicate that the biotite monzogranite emplaced in the Late Cretaceous (83.1±1.6 Ma). These rocks are characterized by relatively high contents of SiO2 (60.21%-62.54%), MgO (2.19%-3.02%), Mg# (41.25-50.73), low contents of Y (15.9×10-6-17.8×10-6), Yb (1.46×10-6-1.73×10-6) and high Sr/Y (35.0-47.6), La/Yb (29.6-38.6) ratios, showing high-SiO2 adakitic rock affinity. These rocks belong to high-K calc-alkaline and metaluminous series (A/CNK=0.84-0.92), and enriched in LREE, LILE (large ion lithophile element) and depleted in HREE, HFSE (high field strength element), such as Nb and Ta. The zircon trace element data show high V/Sc, Ce/Ce*, 10 000×(Eu/Eu*), and moderate Eu/Eu* ratios. By comparing with typical adakitic rocks from the Gangdese belt, it is proposed that these rocks with high oxygen fugacity were derived from the partial melting of subducted Neo-Tethyan slab, and have good potential for Cu-Au mineralization.

       

    • loading
    • Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy & Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      Chen, L., Zheng, Y.F., 2019. Neoproterozoic Oceanic Slab-Mantle Interaction: Geochemical Evidence from Mesozoic Andesitic Rocks in the Middle and Lower Yangtze Valley. Earth Science, 44(12): 4144-4151 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912024.htm
      Copeland, P., Harrison, T. M., Pan, Y., et al., 1995. Thermal Evolution of the Gangdese Batholith, Southern Tibet: A History of Episodic Unroofing. Tectonics, 14: 223-236. https://doi.org/10.1029/94tc01676
      Dai, Z.W., Li, G.M., Ding, J., et al., 2018. Late Cretaceous Adakite in Nuri Area, Tibet: Products of Ridge Subduction. Earth Science, 43(8): 2727-2741(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808015.htm
      Davidson, J., MacPherson, C., Turner, S., 2007. Amphibole Control in the Differentiation of Arc Magmas. Geochimica et Cosmochimica Acta, 71: A204-A204.
      Guan, Q., Zhu, D.C., Zhao, Z.D., et al., 2010. Late Cretaceous Adakites in the Eastern Segment of the Gangdese Belt, Southern Tibet: Products of Neo-Tethyan Ridge Subduction?. Acta Petrologica Sinica, 26(7): 2165-2179 (in Chinese with English abstract).
      Guo, F., Nakamuru, E., Fan, W. M., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing, Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077
      Hou, Z.Q., Gao, Y.F., Meng, X.J., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2): 239-248 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200402005.htm
      Huang, W.T., Liang, H. Y., Zhang, J., et al., 2020. Formation of the Cretaceous Skarn Cu-Au Deposits of the Southern Gangdese Belt, Tibet: Case Studies of the Kelu and Sangbujiala Deposits. Ore Geology Reviews, 122: 103481. https://doi.org/10.1016/j.oregeorev.2020.103481
      Jiang, Z.Q., Wang, Q., Wyman, D. A., et al., 2011. Origin of about 30 Ma Chongmuda Adakitic Intrusive Rocks in the Southern Gangdese Region, Southern Tibet: Partial Melting of the Northward Subducted Indian Continent Crust?. Geochimica, 40(2): 126-146 (in Chinese with English abstract).
      Kay, R.W., Kay, S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(219): 177-189. https://doi.org/10.1016/0040-1951(93)90295-U
      Lang, X.H., Tang, J.X., Li, Z.J., et al., 2014. U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xiongcun District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608-622. https://doi.org/10.1016/j.jseaes.2013.08.009
      Loadera, A.M., Wilkinsonb, J.J., Armstrongb, R.N., 2017. The Effect of Titanite Crystallisation on Eu and Ce Anomalies in Zircon and Its Implications for the Assessment of Porphyry Cu Deposit Fertility. Earth and Planetary Science Letters, 472: 107-119. https://doi.org/10.1016/j.epsl.2017.05.010
      Loucks, R.R., 2014. Distinctive Composition of Copper-Ore-Forming Arcmagmas. Australian Journal of Earth Sciences, 61(1): 5-16. https://doi.org/10.1080/08120099.2013.865676
      Lu, Y.J., Loucks, R.R., Fiorentini, M., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. In: Richards, J., ed., Society of Economic Geologists Special Publication No. 19 on Tethyan Tectonics and Metallogeny. Society of Economic Geologists, Littleton, 329-347.
      Ma, L., Wang, Q., Wyman, D.A., et al., 2013. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet. Lithos, 175-176: 315-332. https://doi.org/10.1016/j.lithos.04.006
      Martin, H., Smithies, R., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite(TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79: 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
      Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract).
      Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915-918. https://doi.org/10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
      Qu, X.M., Jiang, J.H., Xin, H.B., et al., 2010. A Study of Two Groups of Adakite almost Simulteneously Formed in Gangdese Collisional Orogen, Tibet: Why does One Group Contain Copper Mineralization and the Other Not?. Mineral Deposits, 29(3): 381-394 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201003000.htm
      Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160: 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      Reich, M., Parada, M. A., Palacios, C., et al., 2003. Adakite-Like Signature of Late Miocene Intrusions at the Los Pelambres Giant Porphyry Copper Deposit in the Andes of Central Chile: Metallogenic Implications. Mineralium Deposita, 38(7): 876-885. https://doi.org/10.1007/s00126-003-0369-9
      Richards, J.P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1): 1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006
      Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160: 297-312. https://doi.org/10.1007/s00410-009-0478-2
      Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, Londou, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19.
      Tang, J.X., Ding, S., Meng, Z., et al., 2016. The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet: A Case Study of the Sinongduo Ag Polymetallic Deposit. Acta Geoscientia Sinica, 37(4): 461-470 (in Chinese with English abstract).
      Tang, J.X., Wang, D.H., Wang, X.W., et al., 2010. Geological Features and Metallogenic Model of the Jiama Copper-Polymetallic Deposit in Tibet. Acta Geoscientica Sinica, 31(4): 495-506(in Chinese with English abstract).
      Tang, J.X., Wang, Q., Yang, H.H., et al., 2017. Mineralization, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientia Sinica, 38(5): 571-613 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201705002.htm
      Wang, Q., McDermott, F., Xu, J.F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465-468. https://doi.org/10.1130/G21522.1
      Wang, T., 2000. Origin of Hybrid Granitoids and the Implications for Continental Dynamics. Acta Petrologica Sinica, 16(2): 161-168(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=4156161
      Wen, D.R., Chung, S.L., Song, B., et al., 2008. Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics, SE Tibet: Petrogenesis and Tectonic Implications. Lithos, 105(1-2): 1-11. https://doi.org/10.1016/j.lithos.02.005
      Xie, F.W., Tang, J.X., Chen, Y.C., et al., 2018. Apatite and Zircon Geochemistry of Jurassic Porphyries in the Xiongcun District, Southern Gangdese Porphyry Copper Belt: Implications for Petrogenesis and Mineralization. Ore Geology Reviews, 96: 98-114. https://doi.org/10.1016/j.oregeorev.2018.04.013
      Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12): 1111-1114. https://doi.org/10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2 doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
      Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008. Qulong Superlarge Porphyry Cu Deposit in Tibet: Geology, Alteration and Mineralization. Mineral Deposits, 27(3): 279-318 (in Chinese with English abstract).
      Yang, Z.Y., Tang, J.X., Zhang, L.J., et al., 2020. Geological and Geochemical Characteristics of Lithocaps in Sinongduo Area, Tibet: Implications for the Mineralization in Linzizong Group Volcanic Rocks. Earth Science, 45(3): 789-803 (in Chinese with English abstract).
      Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zhang, Z.M., Zhao, G.C., Santosh, M., et al., 2010. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet: Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?. Gondwana Research, 17: 615-631. https://doi.org/10.1016/j.gr.2009.10.007
      Zheng, Y.F., Chen, Y.X., 2016. Continental versus Oceanic Subduction Zone. National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049
      Zhu, D. C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23: 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      Zhu, D. C., Zhao, Z. D., Pan, G. T., et al., 2009. Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction?. Journal of Asian Earth Sciences, 34(3): 298-309. doi: 10.1016/j.jseaes.2008.05.003
      陈龙, 郑永飞, 2019. 长江中下游中生代安山质火山岩记录的新元古代大洋板片-地幔相互作用. 地球科学, 44(12): 4144-4151. doi: 10.3799/dqkx.2019.243
      代作文, 李光明, 丁俊, 等, 2018. 西藏努日晚白垩世埃达克岩: 洋脊俯冲的产物. 地球科学, 43(8): 2727-2741. doi: 10.3799/dqkx.2018.230
      管琪, 朱弟成, 赵志丹, 等, 2010. 西藏南部冈底斯带东段晚白垩世埃克岩: 新特提斯洋脊俯冲的产物?. 岩石学报, 26(7): 2165-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007019.htm
      侯增谦, 高永丰, 孟祥金, 等, 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402005.htm
      姜子琦, 王强, Wyman, D.A., 等, 2011. 西藏冈底斯南缘冲木达约30 Ma埃达克质侵入岩的成因: 向北俯冲的印度陆壳的熔融?. 地球化学, 40(2): 126-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201102002.htm
      莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
      曲晓明, 江军华, 辛洪波, 等, 2010. 西藏冈底斯造山带几乎同时形成的两套埃达克岩为什么一套含矿一套不含矿?. 矿床地质, 29(3): 381-394. doi: 10.3969/j.issn.0258-7106.2010.03.001
      唐菊兴, 丁帅, 孟展, 等, 2016. 西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床: 以斯弄多银多金属矿为例. 地球学报, 37(4): 461-470. doi: 10.3975/cagsb.2016.04.08
      唐菊兴, 王登红, 汪雄武, 等, 2010. 西藏甲玛铜多金属矿矿床地质特征及其矿床模型. 地球学报, 31(4): 495-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201004002.htm
      唐菊兴, 王勤, 杨欢欢, 等, 2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(5): 571-613. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705002.htm
      王涛, 2000. 花岗岩混合成因研究及大陆动力学意义. 岩石学报, 16(2): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002002.htm
      杨志明, 侯增谦, 宋玉财, 等, 2008. 西藏驱龙超大型斑岩铜矿床: 地质、蚀变与成矿. 矿床地质, 27(3): 279-318. doi: 10.3969/j.issn.0258-7106.2008.03.002
      杨宗耀, 唐菊兴, 张乐骏, 等, 2020. 西藏斯弄多地区岩帽地质地球化学特征: 林子宗群火山岩中成矿的指示. 地球科学, 45(3): 789-803. doi: 10.3799/dqkx.2019.044
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(3)

      Article views (1844) PDF downloads(68) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return