• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 4
    Apr.  2021
    Turn off MathJax
    Article Contents
    Xu Qiong, Jiang Tuo, Hou Linchun, Zhao Xiaoming, Tong Xirun, San Feixue, Qiu Xiaofei, 2021. Detrital Zircon Compositions of U-Pb Ages and Hf Isotope for Sandstone of Liantuo Formation from Three Gorges Area, Yangtze Block and Its Geological Significance. Earth Science, 46(4): 1217-1230. doi: 10.3799/dqkx.2020.168
    Citation: Xu Qiong, Jiang Tuo, Hou Linchun, Zhao Xiaoming, Tong Xirun, San Feixue, Qiu Xiaofei, 2021. Detrital Zircon Compositions of U-Pb Ages and Hf Isotope for Sandstone of Liantuo Formation from Three Gorges Area, Yangtze Block and Its Geological Significance. Earth Science, 46(4): 1217-1230. doi: 10.3799/dqkx.2020.168

    Detrital Zircon Compositions of U-Pb Ages and Hf Isotope for Sandstone of Liantuo Formation from Three Gorges Area, Yangtze Block and Its Geological Significance

    doi: 10.3799/dqkx.2020.168
    • Received Date: 2020-04-15
    • Publish Date: 2021-04-15
    • In this study, 120 detrital zircons from the sandstone at the top of the Liantuo Formation in the Huangniuyan Section of the Three Gorges area were measured for U-Pb dating and Lu-Hf isotopic compositions. The U-Pb ages of the zircons from the Huangniuyan Section cluster at~800-880 Ma, ~2 000 Ma, ~2 500 Ma, ~2 700 Ma, among which the youngest zircon age is 724±8 Ma. According to the previous geochronological study of tuff on the top of the Liantuo Formation, the sedimentary age of the sandstone in the upper most part of the Liantuo Formation is limited to~724-714 Ma. The sedimentary time of the Liantuo sandstone is close to the U-Pb age of the youngest detrital zircon, which may reflect a rapid recycling of crustal materials. The Hf isotopic two-stage model ages (TDM2) of zircon are concentrated at~3.7-3.1 Ga, ~2.5-2.0 Ga and~1.3-1.0 Ga, which indicates that the provenance of the sandstone has juvenile crustal growth in the Paleo-Mesoarchean, Paleoproterozoic and Late Mesoproterozoic. By comparing the detrital zircon U-Pb ages and Hf isotopic data from different sections of the Liantuo Formation in the nucleus of the Yangtze craton reported in recent years, it is suggested that the Huangniuyan Section has distinct detrital zircon U-Pb ages and Hf isotopic compositions compared with the Wangfenggang Section, revealing different provenance between them.

       

    • loading
    • Albarède, F., Scherer, E.E., Blichert-Toft, J., et al., 2006. γ-Ray Irradiation in the Early Solar System and the Conundrum of the 176Lu Decay Constant. Geochimica et Cosmochimica Acta, 70(5): 1261-1270. https://doi.org/10.1016/j.gca.2005.09.027
      Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
      Chen, J.F., Foland, K.A., Xing, F.M., et al., 1991. Magmatism along the Southeast Margin of the Yangtze Block: Precambrian Collision of the Yangtze and Cathysia Blocks of China. Geology, 19(8): 815-818. https://doi.org/10.1130/0091-7613(1991)0190815:matsmo>2.3.co;2 doi: 10.1130/0091-7613(1991)0190815:matsmo>2.3.co;2
      Chen, K., Gao, S., Wu, Y.B., et al., 2013. 2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224: 472-490. doi: 10.1016/j.precamres.2012.10.017
      Dong, Y.P., Zhang, G.W., Zhao, X., et al., 2004. Geochemistry of the Subduction-Related Magmatic Rocks in the Dahong Mountains, Northern Hubei Province—Constraint on the Existence and Subduction of the Eastern Mianlüe Oceanic Basin. Science in China (Series D), 47(4): 366-377. doi: 10.1360/02YD0486
      Fedo, C.M., 2003. Detrital Zircon Analysis of the Sedimentary Record. Reviews in Mineralogy and Geochemistry, 53(1): 277-303. https://doi.org/10.2113/0530277
      Gao, W., Zhang, C.H., 2009. Zircon SHRIMP U-Pb Ages of the Huangling Granite and the Tuff Beds from Liantuo Formation in the Three Gorges Area of Yangtze River, China and Its Geological Significance. Geological Bulletin of China, 28(1): 45-50(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200901007.htm
      Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      Guo, J.L., Gao, S., Wu, Y.B., et al., 2014. 3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82-95. https://doi.org/10.1016/j.precamres.2013.12.018
      Guo, J.L., Wu, Y.B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007
      Han, P.Y., Guo, J.L., Chen, K., et al., 2017. Widespread Neoarchean (~2.7-2.6 Ga) Magmatism of the Yangtze Craton, South China, as Revealed by Modern River Detrital Zircons. Gondwana Research, 42: 1-12. https://doi.org/10.1016/j.gr.2016.09.006
      Hawkesworth, C.J., Kemp, A.I.S., 2006. Evolution of the Continental Crust. Nature, 443(7113): 811-817. https://doi.org/10.1038/nature05191
      Hofmann, M., Linnemann, U., Rai, V., et al., 2011. The India and South China Cratons at the Margin of Rodinia-Synchronous Neoproterozoic Magmatism Revealed by LA-ICP-MS Zircon Analyses. Lithos, 123(1-4): 176-187. https://doi.org/10.1016/j.lithos.2011.01.012
      Hu, R., Li, S.Q., Wang, W., et al., 2016. Source Characteristics of Tillite the Nantuo Formation in Three Gorges, Northern Yangtze Block: Evidences from Zircon Ages and Geochemical Composition. Earth Science, 41(10): 1630-1654(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201610002.htm
      Lan, Z.W., Li, X.H., Zhu, M.Y., et al., 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U-Pb Zircon Age Constraints and Regional and Global Significance. Precambrian Research, 263: 123-141. https://doi.org/10.1016/j.precamres.2015.03.012
      Lee, J.S., 1924. Geology of the Gorge District of the Yangtze (from Ichang to Tzekuei) with Special Reference to the Development of the Gorges. Bulletin of the Geological Society of China, 34: 351-392. http://www.cnki.com.cn/Article/CJFDTotal-DZXE1924Z1003.htm
      Li, H.Q., Zhou, W.X., Wei, Y.X., et al., 2020. Two Extensional Events in the Early Evolution of the Yangtze Block, South China: Geochemical and Isotopic Evidence from Two Sets of Paleoproterozoic Alkali Porphyry in the Northern Kongling Terrane. Geological Journal, 55(9): 6296-6324. https://doi.org/10.1002/gj.3802
      Li, L.M., Lin, S.F., Davis, D.W., et al., 2014. Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane: Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block. Precambrian Research, 255: 30-47. https://doi.org/10.1016/j.precamres.2014.09.009
      Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5
      Ling, W.L., Gao, S., Zheng, H.F., et al., 1998. Sm-Nd Isotopic Dating of Kongling Terrain. Chinese Science Bulletin, 43(1): 86-89 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-DQWJ803.004.htm
      Liu, X., Gao, S., Diwu, C., et al., 2008. Precambrian Crustal Growth of Yangtze Craton as Revealed by Detrital Zircon Studies. American Journal of Science, 308(4): 421-468. https://doi.org/10.2475/04.2008.02
      Lu, S.N., Hao, G.J., Wang, H.C., et al., 2014. Mesoproterozoic-Late Qingbaikou (~820 Ma) Tectonic Map in China (1∶10 000 000). Geological Publishing House, Beijing (in Chinese).
      Ludwig, K.R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center, Berkeley, California). BGC Special Publication, Berkeley.
      Nie, H., Yao, J., Wan, X., et al., 2016. Precambrian Tectonothermal Evolution of South Qinling and Its Affinity to the Yangtze Block: Evidence from Zircon Ages and Hf-Nd Isotopic Compositions of Basement Rocks. Precambrian Research, 286: 167-179. https://doi.org/10.1016/j.precamres.2016.10.005
      Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36: 1-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200901004.htm
      Peng, M., Wu, Y., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 54(6): 1098-1104.
      Peng, S.B., Kusky, T.M., Jiang, X.F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2-3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010
      Qiu, X.F., Ling, W.L., Liu, X.M., et al., 2011. Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton. Precambrian Research, 191(3-4): 101-119. https://doi.org/10.1016/j.precamres.2011.09.011
      Qiu, X.F., Ling, W.L., Liu, X.M., et al., 2018. Evolution of the Archean Continental Crust in the Nucleus of the Yangtze Block: Evidence from Geochemistry of 3.0 Ga TTG Gneisses in the Kongling High-Grade Metamorphic Terrane, South China. Journal of Asian Earth Sciences, 154: 149-161. https://doi.org/10.1016/j.jseaes.2017.12.026
      Qiu, X.F., Yang, H.M., Lu, S.S., et al., 2015. Geochronology and Geochemistry of Grenville-Aged (1 063±16 Ma) Metabasalts in the Shennongjia District, Yangtze Block: Implications for Tectonic Evolution of the South China Craton. International Geology Review, 57(1): 76-96. https://doi.org/10.1080/00206814.2014.991949
      Qiu, X.F., Yang, H.M., Zhao, X.M., et al., 2019. Neoarchean Granitic Gneisses in the Kongling Complex, Yangtze Craton: Petrogenesis and Tectonic Implications. Earth Science, 44(2): 415-426(in Chinese with English abstract). http://www.researchgate.net/publication/332558219_Neoarchean_Granitic_Gneisses_in_the_Kongling_Complex_Yangtze_Craton_Petrogenesis_and_Tectonic_Implications
      Qiu, X.F., Zhao, X.M., Yang, H.M., et al., 2017. Paleoproterozoic Metamorphic Event in the Nucleus of the Yangtze Craton: Evidence from U-Pb Geochronology of the Metamorphic Zircons from the Khondalite. Geological Bulletin of China, 36(5): 706-714(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201705003.htm
      Shi, Y.R., Liu, D.Y., Zhang, Z.Q., et al., 2007. SHRIMP Zircon U-Pb Dating of Gabbro and Granite from the Huashan Ophiolite, Qinling Orogenic Belt, China: Neoproterozoic Suture on the Northern Margin of the Yangtze Craton. Acta Geologica Sinica, 81(2): 239-243. https://doi.org/10.1111/j.1755-6724.2007.tb00947.x
      Song, F., Niu, Z.J., He, Y.Y., et al., 2016. U-Pb Age of Detrital Zircon and Its Restriction of Provenance & Paleogeographic Characteristics of Early Nanhua Period in Middle Yangtze. Acta Geologica Sinica, 90(10): 2661-2680(in Chinese with English abstract).
      Thirlwall, M.F., Anczkiewicz, R., 2004. Multidynamic Isotope Ratio Analysis Using MC-ICP-MS and the Causes of Secular Drift in Hf, Nd and Pb Isotope Ratios. International Journal of Mass Spectrometry, 235(1): 59-81. https://doi.org/10.1016/j.ijms.2004.04.002
      Wang, L.J., Griffin, W.L., Yu, J.H., et al., 2013. U-Pb and Lu-Hf Isotopes in Detrital Zircon from Neoproterozoic Sedimentary Rocks in the Northern Yangtze Block: Implications for Precambrian Crustal Evolution. Gondwana Research, 23(4): 1261-1272. https://doi.org/10.1016/j.gr.2012.04.013
      Yin, C.Q., Lin, S.F., Davis, D.W., et al., 2013. 2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China: Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia. Lithos, 182-183: 200-210. doi: 10.1016/j.lithos.2013.10.012
      Zhang, K.X., Pan, G.T., He, W.H., et al., 2015. New Division of Tectonic-Strata Super Region in China. Earth Science, 40(2): 206-233(in Chinese with English abstract). http://www.researchgate.net/publication/281911273_New_division_of_tectonic-strata_superregion_in_China
      Zhang, K.X., Xu, Y.D., He, W.H., et al., 2018. Oceanic and Continental Blocks Distribution during Neoproterozoic Early Qingbaikou Period (1 000-820 Ma) in China. Earth Science, 43(11): 3837-3852 (in Chinese with English abstract).
      Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006. Zircon U-Pb Age and Hf Isotope Evidence for 3.8 Ga Crustal Remnant and Episodic Reworking of Archean Crust in South China. Earth and Planetary Science Letters, 252(1-2): 56-71. doi: 10.1016/j.epsl.2006.09.027
      Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2008. Neoproterozoic Anatexis of Archean Lithosphere: Geochemical Evidence from Felsic to Mafic Intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 163(3): 210-238. http://www.sciencedirect.com/science/article/pii/S0301926808000028
      Zhao, J.H., Asimow, P.D., 2018. Formation and Evolution of a Magmatic System in a Rifting Continental Margin: Neoproterozoic Arc- and MORB-Like Dike Swarms in South China. Journal of Petrology, 59(9): 1811-1844. https://doi.org/10.1093/petrology/egy080
      Zhao, X.M., An, Z.H., Qiu, X.F., et al., 2018. A New Understanding of the "Macaoyuan Group" in North Kongling Area of Yangtze Craton. Earth Science, 43(9): 3324-3336(in Chinese with English abstract). http://www.researchgate.net/publication/329031118_A_New_Understanding_of_the_Macaoyuan_Group_in_North_Kongling_Area_of_Yangtze_Craton
      Zhao, X.M., Liu, S.D., Zhang, Q.X., et al., 2011. Geochemical Characters of the Nanhua System in Changyang, Western Hubei Province and Its Implication for Climate and Sequence Correlation. Acta Geologica Sinica, 85(4): 576-585(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201104014.htm
      Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006. Widespread Archean Basement beneath the Yangtze Craton. Geology, 34(6): 417-420. https://doi.org/10.1130/g22282.1
      Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1): 127-150. https://doi.org/10.1016/j.lithos.2006.10.003
      Zhou, M.F., Yan, D.P., Kennedy, A.K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67. https://doi.org/10.1016/s0012-821x(01)00595-7
      高维, 张传恒, 2009. 长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义. 地质通报, 28(1): 45-50. doi: 10.3969/j.issn.1671-2552.2009.01.006
      胡蓉, 李双庆, 王伟, 等, 2016. 扬子北部三峡地区南沱组冰碛岩的物源特征: 锆石年龄和地球化学证据. 地球科学, 41(10): 1630-1654. doi: 10.3799/dqkx.2016.121
      凌文黎, 高山, 郑海飞, 等, 1998. 扬子克拉通黄陵地区崆岭杂岩Sm-Nd同位素地质年代学研究. 科学通报, 43(1): 86-89. doi: 10.3321/j.issn:0023-074X.1998.01.022
      陆松年, 郝国杰, 王惠初, 等, 2014. 中国中元古代-青白口纪早期(~820 Ma)大地构造图(1∶10 000 000). 北京: 地质出版社.
      潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36: 1-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm
      邱啸飞, 杨红梅, 赵小明, 等, 2019. 扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义. 地球科学, 44(2): 415-426. doi: 10.3799/dqkx.2018.198
      邱啸飞, 赵小明, 杨红梅, 等, 2017. 扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb同位素年龄的证据. 地质通报, 36(5): 706-714. doi: 10.3969/j.issn.1671-2552.2017.05.003
      宋芳, 牛志军, 何垚砚, 等, 2016. 中扬子地区南华纪早期碎屑锆石U-Pb年龄及其对物源特征和古地理格局的约束. 地质学报, 90(10): 2661-2680. doi: 10.3969/j.issn.0001-5717.2016.10.009
      张克信, 潘桂棠, 何卫红, 等, 2015. 中国构造-地层大区划分新方案. 地球科学, 40(2): 206-233. doi: 10.3799/dqkx.2015.016
      张克信, 徐亚东, 何卫红, 等, 2018. 中国新元古代青白口纪早期(1 000~820 Ma)洋陆分布. 地球科学, 43(11): 3837-3852. doi: 10.3799/dqkx.2018.339
      赵小明, 安志辉, 邱啸飞, 等, 2018. 扬子陆核北崆岭地区"马槽园群"的新认识. 地球科学, 43(9): 3324-3336. doi: 10.3799/dqkx.2018.565
      赵小明, 刘圣德, 张权绪, 等, 2011. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比. 地质学报, 85(4): 576-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104014.htm
    • dqkxzx-46-4-1217-附表1-2.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)

      Article views (1430) PDF downloads(131) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return