Citation: | Wang Tao, Huang He, Song Peng, Wu Huanhuan, Zhang Jianjun, Tong Ying, Du Kaiming, Qin Qie, 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172 |
Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., et al., 2010. The Growth of the Continental Crust:Constraints from Zircon Hf-Isotope Data. Lithos, 119(3/4):457-466. https://doi.org/10.1016/j.lithos.2010.07.024
|
Castro, A., Gerya, T., Garcia-Casco, A., et al., 2010. Melting Relations of MORB-Sediment Melanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-Type Batholiths. Journal of Petrology, 51(6):1267-1295. https://doi.org/10.1093/petrology/egq019
|
Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1/2):14-32. https://doi.org/10.1130/b30722.1
|
Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1):1-36. https://doi.org/10.1144/sp318.1
|
Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China:Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5):691-703. https://doi.org/10.1016/s1367-9120(03)00118-4
|
Collins, W. J., Belousova, E. A., Kemp, A. I. S., et al., 2011. Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data. Nature Geoscience, 4(5):333-337. https://doi.org/10.1038/ngeo1127
|
Condie, K. C., 1998. Episodic Continental Growth and Supercontinents:A Mantle Avalanche Connection?. Earth and Planetary Science Letters, 163(1/2/3/4):97-108. https://doi.org/10.1016/s0012-821x(98)00178-2
|
Couzinié, S., Laurent, O., Moyen, J. F., et al., 2016. Post-Collisional Magmatism:Crustal Growth not Identified by Zircon Hf-O Isotopes. Earth and Planetary Science Letters, 456:182-195. https://doi.org/10.1016/j.epsl.2016.09.033
|
Deng, J., Wang, C. M., Bagas, L., et al., 2018. Crustal Architecture and Metallogenesis in the South-Eastern North China Craton. Earth-Science Reviews, 182:251-272. https://doi.org/10.1016/j.earscirev.2018.05.001
|
Deng, J. F., Su, S. G., Mo, X. X., et al., 2004. The Sequence of Magmatic-Tectonic Events and Orogenic Processes of the Yanshan Belt, North China. Acta Geologica Sinica-English Edition, 78(1):260-266. https://doi.org/10.1111/j.1755-6724.2004.tb00698.x
|
DePaolo, D. J., 1988. Age Dependence of the Composition of Continental Crust:Evidence from Nd Isotopic Variations in Granitic Rocks. Earth and Planetary Science Letters, 90(3):263-271. https://doi.org/10.1016/0012-821x(88)90130-6
|
DePaolo, D. J., Linn, A. M., Schubert, G., 1990. The Continental Crustal Age Distribution:Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 96(B2):2071. https://doi.org/10.1029/90jb02219
|
Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When Continents Formed. Science, 331(6014):154-155. https://doi.org/10.1126/science.1201245
|
Dickin, A. P., McNutt, R. H., 1989. Nd Model Age Mapping of the Southeast Margin of the Archean Foreland in the Grenville Province of Ontario. Geology, 17(4):299. https://doi.org/10.1130/0091-7613(1989)017 < 0299:nmamot > 2.3.co; 2 doi: 10.1130/0091-7613(1989)017<0299:nmamot>2.3.co;2
|
Dickin, A. P., McNutt, R. H., 2003. An Application of Nd Isotope Mapping in Structural Geology:Delineating an Allochthonous Grenvillian Terrane at North Bay, Ontario. Geological Magazine, 140(5):539-548. https://doi.org/10.1017/s0016756803008070
|
Dobretsov, N. L., Buslov, M. M., 2011. Problems of Geodynamics, Tectonics, and Metallogeny of Orogens. Russian Geology and Geophysics, 52(12):1505-1515. https://doi.org/10.1016/j.rgg.2011.11.012
|
Griffin, W. L., Begg, G. C., O'Reilly, S. Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11):905-910. https://doi.org/10.1038/ngeo1954
|
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICP MS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
|
Gray, D. R., Foster, D. A., 2004. Tectonic Evolution of the Lachlan Orogen, Southeast Australia:Historical Review, Data Synthesis and Modern Perspectives. Australian Journal of Earth Sciences, 51(6):773-817. https://doi.org/10.1111/j.1400-0952.2004.01092.x
|
Hacker, B. R., Kelemen, P. B., Behn, M. D., 2011. Differentiation of the Continental Crust by Relamination. Earth and Planetary Science Letters, 307(3/4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024
|
Hacker, B. R., Kelemen, P. B., Behn, M. D., 2015. Continental Lower Crust. Annual Review of Earth and Planetary Sciences, 43(1):167-205. https://doi.org/10.1146/annurev-earth-050212-124117
|
Hall, R., 2017. Southeast Asia:New Views of the Geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45(1):331-358. https://doi.org/10.1146/annurev-earth-063016-020633
|
Han, B. F., He, G. Q., Wang, S. G., 1999. Postcollisional Mantle-Derived Magmatism, Underplating and Implications for Basement of the Junggar Basin. Science in China Series D: Earth Sciences, 42(2):113-119. https://doi.org/10.1007/bf02878509
|
Han, B. F., Wang, S. G., Jahn, B. M., et al., 1997. Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China:Geochemistry and Nd-Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 138(3/4):135-159. https://doi.org/10.1016/s0009-2541(97)00003-x
|
Han, B. F., He, G. Q., Wang, S. G., et al, 1998. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xinjiang. Geological Review, 44:396-409(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800070242
|
Han, B. F., Ji, J. Q., Song B., et al, 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part I):Timing of Post-Collisional Plutonism. Acta Petrologica Sinica. 22:1077-1086(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200605003.htm
|
Hawkesworth, C., Cawood, P., Dhuime, B., 2013. Continental Growth and the Crustal Record. Tectonophysics, 609:651-660. https://doi.org/10.1016/j.tecto.2013.08.013
|
Hawkesworth, C. J., Kemp, A. I. S., 2006. Evolution of the Continental Crust. Nature, 443(7113):811-817. https://doi.org/10.1038/nature05191
|
Hawkesworth, C. J., Cawood, P. A., Dhuime, B., et al., 2017. Earth's Continental Lithosphere through Time. Annual Review of Earth and Planetary Sciences, 45(1):169-198. https://doi.org/10.1146/annurev-earth-063016-020525
|
Hong, D. W., Wang, S. G., Xie, X. L., et al, 2000. Genesis of Positive Ε(Nd, T) Granitoids in the Da Hinggan Mts. Mongolia Orogenic Belt and Growth Continental Crust. Earth Science Frontiers, 7(2):441-456(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200002016.htm
|
Hong, D. W., Wang, S. G., Xie, X. L., et al, 2003. The Relationship between Supercontinent Evolution and Continental Crustal Growth from the Positive ΕNd Granites in Central Asia. ActaGeologicaSinica, 77(2):203-209 (in Chinese).
|
Hong, D. W., Zhang, J. S., Wang, T., et al., 2004. Continental Crustal Growth and the Supercontinental Cycle:Evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 23(5):799-813. https://doi.org/10.1016/s1367-9120(03)00134-2
|
Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
|
Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang:Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1/2):15-51. https://doi.org/10.1016/s0040-1951(00)00176-1
|
Huang, H., Wang, T., Tong, Y., et al., 2020. Rejuvenation of Ancient Micro-Continents during Accretionary Orogenesis: Insights from the Yili Block and Adjacent Regions of the SW Central Asian Orogenic Belt. Earth-Science Reviews, 103255. https://doi.org/10.1016/j.earscirev.2020.103255
|
Jahn, B. M., 2010. Accretionary Orogen and Evolution of the Japanese Islands:Implications from a Sr-Nd Isotopic Study of the Phanerozoic Granitoids from SW Japan. American Journal of Science, 310(10):1210-1249. https://doi.org/10.2475/10.2010.02
|
Jahn, B. M., Usuki, M., Usuki, T., et al., 2014. Generation of Cenozoic Granitoids in Hokkaido (Japan):Constraints from Zircon Geochronology, Sr-Nd-Hf Isotopic and Geochemical Analyses, and Implications for Crustal Growth. American Journal of Science, 314(2):704-750. https://doi.org/10.2475/02.2014.09
|
Jahn, B. M., Wu, F. Y., Hong, D. W., 2000a. Important Crustal Growth in the Phanerozoic:Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 109(1):5-20. https://doi.org/10.1007/bf02719146
|
Jahn, B. M., Wu, F. Y., Chen, B., 2000b. Massive Granitoid Generation in Central Asia:Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2):82-92. https://doi.org/10.18814/epiiugs/2000/v23i2/001
|
Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1):73-100. https://doi.org/10.1144/gsl.sp.2004.226.01.05
|
Kemp, A. I. S., Hawkesworth, C. J., 2009. Generation and Secular Evolution of the Continental Crust. The Crust, 3:349.
|
Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., et al., 2004. Isotope Provinces, Mechanisms of Generation and Sources of the Continental Crust in the Central Asian Mobile Belt:Geological and Isotopic Evidence. Journal of Asian Earth Sciences, 23(5):605-627. https://doi.org/10.1016/s1367-9120(03)00130-5
|
Kröner, A., Kovach, V., Alexeiev, D., et al., 2017. No Excessive Crustal Growth in the Central Asian Orogenic Belt:Further Evidence from Field Relationships and Isotopic Data. Gondwana Research, 50:135-166. https://doi.org/10.1016/j.gr.2017.04.006
|
Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1):103-125. https://doi.org/10.1016/j.gr.2012.12.023
|
Kröner, A., Kovach, V. P., Kozakov, I. K., et al., 2015. Zircon Ages and Nd-Hf Isotopes in UHT Granulites of the Ider Complex:A Cratonic Terrane within the Central Asian Orogenic Belt in NW Mongolia. Gondwana Research, 27(4):1392-1406. https://doi.org/10.1016/j.gr.2014.03.005
|
Lee, C. T. A., Morton, D. M., Kistler, R. W., et al., 2007. Petrology and Tectonics of Phanerozoic Continent Formation:From Island Arcs to Accretion and Continental Arc Magmatism. Earth and Planetary Science Letters, 263(3/4):370-387. https://doi.org/10.1016/j.epsl.2007.09.025
|
Li, P. F., Sun, M., Shu, C. T., et al., 2019. Evolution of the Central Asian Orogenic Belt along the Siberian Margin from Neoproterozoic-Early Paleozoic Accretion to Devonian Trench Retreat and a Comparison with Phanerozoic Eastern Australia. Earth-Science Reviews, 198:102951. https://doi.org/10.1016/j.earscirev.2019.102951
|
Maruyama, S., 1997. Pacific-Type Orogeny Revisited:Miyashiro-Type Orogeny Proposed. The Island Arc, 6(1):91-120. https://doi.org/10.1111/j.1440-1738.1997.tb00042.x
|
McCulloch, M. T., Bennett, V. C., 1994. Progressive Growth of the Earth's Continental Crust and Depleted Mantle:Geochemical Constraints. Geochimica et Cosmochimica Acta, 58(21):4717-4738. https://doi.org/10.1016/0016-7037(94)90203-8
|
Mo, X. X. 2011. Magma and Magmatic Rocks:"Probes" and Evolution Records in the Deep Earth. Journal of Nature, 33 (5):255-259 (in Chinese).
|
Mole, D. R., Fiorentini, M. L., Cassidy, K. F., et al., 2013. Crustal Evolution, Intra-Cratonic Architecture and the Metallogeny of an Archaean Craton. Geological Society, London, Special Publications, 393(1):23-80. https://doi.org/10.1144/sp393.8
|
Moyen, J. F., Laurent, O., Chelle-Michou, C., et al., 2017. Collision Vs. Subduction-Related Magmatism:Two Contrasting Ways of Granite Formation and Implications for Crustal Growth. Lithos, 277:154-177. https://doi.org/10.1016/j.lithos.2016.09.018
|
Murphy, J. B., Nance, R. D., 2002. Sm-Nd Isotopic Systematics as Tectonic Tracers:An Example from West Avalonia in the Canadian Appalachians. Earth-Science Reviews, 59(1/2/3/4):77-100. https://doi.org/10.1016/s0012-8252(02)00070-3
|
Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis. Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
|
Patchett, 2003. Ages and Growth of the Continental Crust from Radiogenic Isotopes. Treatise on Geochemistry, Volume 3: 321-34.
|
Robinson, P. T., Trumbull, R. B., Schmitt, A., et al., 2015. The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites. Gondwana Research, 27(2):486-506. https://doi.org/10.1016/j.gr.2014.06.003
|
Royden, L. H., 1993. The Tectonic Expression Slab Pull at Continental Convergent Boundaries. Tectonics, 12(2):303-325. https://doi.org/10.1029/92tc02248
|
Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557):571-578. https://doi.org/10.1038/378571a0
|
Rudnick, R., Gao S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochmica Et Cosmochimica Acta.
|
Safonova, I., 2017. Juvenile Versus Recycled Crust in the Central Asian Orogenic Belt:Implications from Ocean Plate Stratigraphy, Blueschist Belts and Intra-Oceanic Arcs. Gondwana Research, 47:6-27. https://doi.org/10.1016/j.gr.2016.09.003
|
Safonova, I. Y., Santosh, M., 2014. Accretionary Complexes in the Asia-Pacific Region:Tracing Archives of Ocean Plate Stratigraphy and Tracking Mantle Plumes. Gondwana Research, 25(1):126-158. https://doi.org/10.1016/j.gr.2012.10.008
|
Scholl, D. W., von Huene, R., 2009. Implications of Estimated Magmatic Additions and Recycling Losses at the Subduction Zones of Accretionary (Non-Collisional) and Collisional (Suturing) Orogens. Geological Society, London, Special Publications, 318(1):105-125. https://doi.org/10.1144/sp318.4
|
Seltmann, R., Konopelko, D., Biske, G., et al., 2011. Hercynian Post-Collisional Magmatism in the Context of Paleozoic Magmatic Evolution of the Tien Shan Orogenic Belt. Journal of Asian Earth Sciences, 42(5):821-838. https://doi.org/10.1016/j.jseaes.2010.08.016
|
Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435):299-307. https://doi.org/10.1038/364299a0
|
Sisson, V. B., Roeske, S., Pavlis, T. L. (Editors), 2003. Geology of a Transpressional Orogen Developed During Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper 371. Geological Society of America, Boulder, Colorado: 375.
|
Song, P., Wang, T., Tong, Y., et al., 2019. Contrasting Deep Crustal Compositions between the Altai and East Junggar Orogens, SW Central Asian Orogenic Belt: Evidence from Zircon Hf Isotopic Mapping. Lithos, 328-329: 297-311. https://doi.org/10.1016/j.lithos.2018.12.039
|
Spencer, C. J., Roberts, N. M. W., Santosh, M., 2017. Growth, Destruction, and Preservation of Earth's Continental Crust. Earth-Science Reviews, 172:87-106. https://doi.org/10.1016/j.earscirev.2017.07.013
|
Stern, R. J., Ali, K. A., Liegeois, J. P., et al., 2010. Distribution and Significance of Pre-Neoproterozoic Zircons in Juvenile Neoproterozoic Igneous Rocks of the Arabian-Nubian Shield. American Journal of Science, 310(9):791-811. https://doi.org/10.2475/09.2010.02
|
Stern, R. J., Scholl, D. W., 2010. Yin and Yang of Continental Crust Creation and Destruction by Plate Tectonic Processes. International Geology Review, 52(1):1-31. https://doi.org/10.1080/00206810903332322
|
Sun, M., Yuan, C., Xiao, W. J., et al., 2008. Zircon U-Pb and Hf Isotopic Study of Gneissic Rocks from the Chinese Altai:Progressive Accretionary History in the Early to Middle Palaeozoic. Chemical Geology, 247(3/4):352-383. https://doi.org/10.1016/j.chemgeo.2007.10.026
|
Tang, G. J., Chung, S. L., Hawkesworth, C. J., et al., 2017. Short Episodes of Crust Generation during Protracted Accretionary Processes:Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464:142-154. doi: 10.1016/j.epsl.2017.02.022
|
Van Staal, C. R., Barr, S. M., Murphy, J. B., 2012. Provenance and Tectonic Evolution of Ganderia:Constraints on the Evolution of the Iapetus and Rheic Oceans. Geology, 40(11):987-990. https://doi.org/10.1130/g33302.1
|
Wang, T., Li, W. P., Li, J. B., et al., 2008. Increase of Juvenal Mantle-Derived Composition from Syn-Orogenic to Post-Orogenic Granites of the East Part of the Eastern Tianshan(China) and Implications for Continental Vertical Growth:Sr and Nd Isotopic Evidence. Acta Geologica Sinica, 24(4):762-772 (in Chinese).
|
Wang, T., Jahn, B. M., Kovach, V. P., et al., 2009. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1/2/3/4):359-372. https://doi.org/10.1016/j.lithos.2009.02.001
|
Wang, T., Tong, Y., Zhang, L., et al., 2017a. Phanerozoic Granitoids in the Central and Eastern Parts of Central Asia and their Tectonic Significance. Journal of Asian Earth Sciences, 145:368-392. https://doi.org/10.1016/j.jseaes.2017.06.029
|
Wang, T., Gladkochub, D., Hou Z. Q., et al., 2017b.Orogenic Architecture and Crustal Growth from Accretion to Collision. IGCP Application (IGCP-662 Project).
|
Wang, T., Wang, X. X, Guo, L., et al. 2017. Granite and Tectonics. Acta PetrologicaS inica, 33 (05):1459-1478 (in Chinese).
|
Wang, T., and Hou Z. Q., 2018. Isotopic Mapping and Deep Material Probing(Ⅰ):Revealing the Compositional Evolution of the Lithosphere and Crustal Growth Processes. Earth Science Frontiers, 25(6):1-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201806003.htm
|
Wang, X. X., Wang, T., Castro, A., et al., 2015. Proterozoic Rapakivi Granites from the North Qaidam Orogen, NW China:Implications for Basement Attribution. Gondwana Research, 28(4):1516-1529. https://doi.org/10.1016/j.gr.2014.09.018
|
Wang, X. X., Wang, T., Ke, C. H., et al., 2015. Nd-Hf Isotopic Mapping of Late Mesozoic Granitoids in the East Qinling Orogen, Central China:Constraint on the Basements of Terranes and Distribution of Mo Mineralization. Journal of Asian Earth Sciences, 103:169-183. https://doi.org/10.1016/j.jseaes.2014.07.002
|
Wang, Z. Q., Yan, Q. R., Yan, Z., et al. 2009. New Division of Main Tectonic Units in the Qinling Orogenic Belt. Acta Geologica Sinica, 83 (11):1527-1546 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200911001
|
Wilhem, C., Windley, B. F., Stampfli, G. M., 2012. The Altaids of Central Asia:A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews, 113(3/4):303-341. https://doi.org/10.1016/j.earscirev.2012.04.001
|
Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022
|
Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1/2):89-113. https://doi.org/10.1016/s0040-1951(00)00179-7
|
Wu, Y.B., 2019. Paleozoic Magmatism in the Qinling Orogen and Its Geodynamic Significance. Earth Science, 44(12):4173-4177(in Chinese with English abstract).
|
Xiao, W. J., Windley, B. F., Han, C. M., et al., 2017. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186:94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
|
Xiao, W. J., Windley, B. F., Sun, S., Li, et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia:Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1):477-507. https://doi.org/10.1146/annurev-earth-060614-105254
|
Xu, X. W., Li, X. H., Jiang, N., et al., 2015. Basement Nature and Origin of the Junggar Terrane:New Zircon U-Pb-Hf Isotope Evidence from Paleozoic Rocks and their Enclaves. Gondwana Research, 28(1):288-310. https://doi.org/10.1016/j.gr.2014.03.011
|
Yang, Q. D., Wang, T., Guo, L., et al., 2017. Nd Isotopic Variation of Paleozoic-Mesozoic Granitoids from the Da Hinggan Mountains and Adjacent Areas, NE Asia:Implications for the Architecture and Growth of Continental Crust. Lithos, 272-273:164-184. https://doi.org/10.1016/j.lithos.2016.11.015
|
Yan, Z., Wang, Z. Q, Li, J. L., et al., 2012. Tectonic Properties of the Western Qinling Wedge and Their Accretionary OrogenicProcesses. Acta Petrologica Sinica, 28 (06):1808-1828 (in Chinese).
|
Zhang, J., Wang, T., Tong, Y., et al., 2017. Tracking Deep Ancient Crustal Components by Xenocrystic/inherited Zircons of Palaeozoic Felsic Igneous Rocks from the Altai-East Junggar Terrane and Adjacent Regions, Western Central Asian Orogenic Belt and its Tectonic Significance. International Geology Review, 59(16):2021-2040. https://doi.org/10.1080/00206814.2017.1308841
|
Zhang, J. J., Wang, T., Zhang, L., et al., 2015. Tracking Deep Crust by Zircon Xenocrysts within Igneous Rocks from the Northern Alxa, China:Constraints on the Southern Boundary of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 108:150-169. https://doi.org/10.1016/j.jseaes.2015.04.019
|
Zheng, Y.F., Chen, Y.X, 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983(in Chinese with English abstract).
|
Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186:76-93. https://doi.org/10.1016/j.earscirev.2017.01.012
|
Zhou, X. H., Chen, W. J. 2001. Sr-Nd-Pb Isotope Mapping of the Late Mesozoic Volcanic Rocks in the Northern Margin of the North China Craton and Its Tectonic Significance. Geochemistry, 30 (1):10-23 (in Chinese).
|
Zimmermann, S., Hall, R., 2016. Provenance of Triassic and Jurassic Sandstones in the Banda Arc:Petrography, Heavy Minerals and Zircon Geochronology. Gondwana Research, 37:1-19. https://doi.org/10.1016/j.gr.2016.06.001
|
韩宝福, 何国琦, 王式洸, 等, 1998.新疆北部碰撞后幔源岩浆活动与陆壳纵向生长.地质论评, 44:396-409. doi: 10.3321/j.issn:0371-5736.1998.04.009
|
韩宝福, 季建清, 宋彪, 等, 2006.新疆准噶尔晚古生代陆壳垂向生长(1)——后碰撞深成岩浆活动的时限.岩石学报, 22(5):1077-1086. http://d.wanfangdata.com.cn/periodical/ysxb98200605003
|
洪大卫, 王式洸, 谢锡林, 等, 2000.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长.地学前缘, 7(2):441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012
|
洪大卫, 王式光, 谢锡林, 等, 2003.从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系.地质学报, 77(2):203-209. doi: 10.3321/j.issn:0001-5717.2003.02.008
|
莫宣学, 2011.岩浆与岩浆岩:地球深部"探针"与演化记录.自然杂志, 33(5):255-259. http://qikan.cqvip.com/Qikan/Article/Detail?id=39656172
|
王涛, 李伍平, 李金宝, 等, 2008.东天山东段同造山到后造山花岗岩幔源组分的递增及陆壳垂向生长意义——Sr、Nd同位素证据.岩石学报, 24(04):762-772. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200804015
|
王涛, 王晓霞, 郭磊, 等, 2017.花岗岩与大地构造.岩石学报, 33(5):1459-1478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705006
|
王涛, 侯增谦.2018.同位素填图与深部物质探测(Ⅰ):揭示岩石圈组成演变与地壳生长.地学前缘, 25(6):1-19. http://d.wanfangdata.com.cn/periodical/dxqy201806003
|
王宗起, 闫全人, 闫臻, 等, 2009.秦岭造山带主要大地构造单元的新划分.地质学报, 83(11):1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001
|
吴元保, 2019.秦岭造山带古生代岩浆作用及地球动力学意义.地球科学, 44(12):4173-4177. doi: 10.3799/dqkx.2019.266
|
闫臻, 王宗起, 李继亮, 等, 2012.西秦岭楔的构造属性及其增生造山过程.岩石学报, 28(6):1808-1828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201206008
|
郑永飞, 陈伊翔, 2019.大陆俯冲带壳幔相互作用.地球科学, 44(12):3961-3983. doi: 10.3799/dqkx.2019.982
|
周新华, 陈文寄. 2001.华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义.地球化学, 30(1):10-23. doi: 10.3321/j.issn:0379-1726.2001.01.003
|