• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 7
    Jul.  2020
    Turn off MathJax
    Article Contents
    Wang Tao, Huang He, Song Peng, Wu Huanhuan, Zhang Jianjun, Tong Ying, Du Kaiming, Qin Qie, 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172
    Citation: Wang Tao, Huang He, Song Peng, Wu Huanhuan, Zhang Jianjun, Tong Ying, Du Kaiming, Qin Qie, 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172

    Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang)

    doi: 10.3799/dqkx.2020.172
    • Received Date: 2020-06-23
    • Publish Date: 2020-07-15
    • Multiple isotopic mapping of magmatic rocks is a useful tool to unveil the architecture and composition of the deep lithosphere of orogens and to study the crustal growth. As the world's largest and most typical accretionary orogenic belt,the Central Asian Orogenic Belt (CAOB) is an ideal natural laboratory for addressing the scientific issues mentioned above. In this contribution,we synthetically exhibit the recent achievements in isotopic mapping being carried out in northern Xinjiang,SW CAOB,and discuss the relevant issues. Cross-section of Nd-Hf isotopic data across the Altai-Junggar-Tianshan-Beishan orogens preliminarily indicate that some ancient materials are distributed in the central Altai,the Junggar is composed mostly of juvenile components,and the most ancient crustsare found in Eastern Tianshan-Beishan areas. These differences can be attributed to the combination of lateral continental crust growth at the syn-accretionary stage and the vertical growth at late- to post-accretionary stages. The Hf isotopic mapping of felsic rocks in the Western Tianshan and adjacent regions reveals a within-microcontinental heterogeneity in lithospheric architecture,and alternating occurrence in space and time of juvenile and ancient crustal components implies periodic continental growth and reworking. Details of components in the deep lithosphere probed by isotopic mapping,juvenile crustal endmembers particularly,require further studies. We need to explore the results of multi-proxy isotopicsystems and understand the mechanism behind the similarities and differences. Furthermore,deep lithospheric compositions traced by multi-isotopes should be in agreement with geophysical data as well as experimental petrology. Our ultimate goal is to establish a multidisciplinary approach with multi-isotopic mapping as the core,including geophysical detection,deep drilling,and simulation of deep process.

       

    • loading
    • Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., et al., 2010. The Growth of the Continental Crust:Constraints from Zircon Hf-Isotope Data. Lithos, 119(3/4):457-466. https://doi.org/10.1016/j.lithos.2010.07.024
      Castro, A., Gerya, T., Garcia-Casco, A., et al., 2010. Melting Relations of MORB-Sediment Melanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-Type Batholiths. Journal of Petrology, 51(6):1267-1295. https://doi.org/10.1093/petrology/egq019
      Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1/2):14-32. https://doi.org/10.1130/b30722.1
      Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1):1-36. https://doi.org/10.1144/sp318.1
      Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China:Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5):691-703. https://doi.org/10.1016/s1367-9120(03)00118-4
      Collins, W. J., Belousova, E. A., Kemp, A. I. S., et al., 2011. Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data. Nature Geoscience, 4(5):333-337. https://doi.org/10.1038/ngeo1127
      Condie, K. C., 1998. Episodic Continental Growth and Supercontinents:A Mantle Avalanche Connection?. Earth and Planetary Science Letters, 163(1/2/3/4):97-108. https://doi.org/10.1016/s0012-821x(98)00178-2
      Couzinié, S., Laurent, O., Moyen, J. F., et al., 2016. Post-Collisional Magmatism:Crustal Growth not Identified by Zircon Hf-O Isotopes. Earth and Planetary Science Letters, 456:182-195. https://doi.org/10.1016/j.epsl.2016.09.033
      Deng, J., Wang, C. M., Bagas, L., et al., 2018. Crustal Architecture and Metallogenesis in the South-Eastern North China Craton. Earth-Science Reviews, 182:251-272. https://doi.org/10.1016/j.earscirev.2018.05.001
      Deng, J. F., Su, S. G., Mo, X. X., et al., 2004. The Sequence of Magmatic-Tectonic Events and Orogenic Processes of the Yanshan Belt, North China. Acta Geologica Sinica-English Edition, 78(1):260-266. https://doi.org/10.1111/j.1755-6724.2004.tb00698.x
      DePaolo, D. J., 1988. Age Dependence of the Composition of Continental Crust:Evidence from Nd Isotopic Variations in Granitic Rocks. Earth and Planetary Science Letters, 90(3):263-271. https://doi.org/10.1016/0012-821x(88)90130-6
      DePaolo, D. J., Linn, A. M., Schubert, G., 1990. The Continental Crustal Age Distribution:Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 96(B2):2071. https://doi.org/10.1029/90jb02219
      Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When Continents Formed. Science, 331(6014):154-155. https://doi.org/10.1126/science.1201245
      Dickin, A. P., McNutt, R. H., 1989. Nd Model Age Mapping of the Southeast Margin of the Archean Foreland in the Grenville Province of Ontario. Geology, 17(4):299. https://doi.org/10.1130/0091-7613(1989)017 < 0299:nmamot > 2.3.co; 2 doi: 10.1130/0091-7613(1989)017<0299:nmamot>2.3.co;2
      Dickin, A. P., McNutt, R. H., 2003. An Application of Nd Isotope Mapping in Structural Geology:Delineating an Allochthonous Grenvillian Terrane at North Bay, Ontario. Geological Magazine, 140(5):539-548. https://doi.org/10.1017/s0016756803008070
      Dobretsov, N. L., Buslov, M. M., 2011. Problems of Geodynamics, Tectonics, and Metallogeny of Orogens. Russian Geology and Geophysics, 52(12):1505-1515. https://doi.org/10.1016/j.rgg.2011.11.012
      Griffin, W. L., Begg, G. C., O'Reilly, S. Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11):905-910. https://doi.org/10.1038/ngeo1954
      Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICP MS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      Gray, D. R., Foster, D. A., 2004. Tectonic Evolution of the Lachlan Orogen, Southeast Australia:Historical Review, Data Synthesis and Modern Perspectives. Australian Journal of Earth Sciences, 51(6):773-817. https://doi.org/10.1111/j.1400-0952.2004.01092.x
      Hacker, B. R., Kelemen, P. B., Behn, M. D., 2011. Differentiation of the Continental Crust by Relamination. Earth and Planetary Science Letters, 307(3/4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024
      Hacker, B. R., Kelemen, P. B., Behn, M. D., 2015. Continental Lower Crust. Annual Review of Earth and Planetary Sciences, 43(1):167-205. https://doi.org/10.1146/annurev-earth-050212-124117
      Hall, R., 2017. Southeast Asia:New Views of the Geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45(1):331-358. https://doi.org/10.1146/annurev-earth-063016-020633
      Han, B. F., He, G. Q., Wang, S. G., 1999. Postcollisional Mantle-Derived Magmatism, Underplating and Implications for Basement of the Junggar Basin. Science in China Series D: Earth Sciences, 42(2):113-119. https://doi.org/10.1007/bf02878509
      Han, B. F., Wang, S. G., Jahn, B. M., et al., 1997. Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China:Geochemistry and Nd-Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 138(3/4):135-159. https://doi.org/10.1016/s0009-2541(97)00003-x
      Han, B. F., He, G. Q., Wang, S. G., et al, 1998. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xinjiang. Geological Review, 44:396-409(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800070242
      Han, B. F., Ji, J. Q., Song B., et al, 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part I):Timing of Post-Collisional Plutonism. Acta Petrologica Sinica. 22:1077-1086(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200605003.htm
      Hawkesworth, C., Cawood, P., Dhuime, B., 2013. Continental Growth and the Crustal Record. Tectonophysics, 609:651-660. https://doi.org/10.1016/j.tecto.2013.08.013
      Hawkesworth, C. J., Kemp, A. I. S., 2006. Evolution of the Continental Crust. Nature, 443(7113):811-817. https://doi.org/10.1038/nature05191
      Hawkesworth, C. J., Cawood, P. A., Dhuime, B., et al., 2017. Earth's Continental Lithosphere through Time. Annual Review of Earth and Planetary Sciences, 45(1):169-198. https://doi.org/10.1146/annurev-earth-063016-020525
      Hong, D. W., Wang, S. G., Xie, X. L., et al, 2000. Genesis of Positive Ε(Nd, T) Granitoids in the Da Hinggan Mts. Mongolia Orogenic Belt and Growth Continental Crust. Earth Science Frontiers, 7(2):441-456(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200002016.htm
      Hong, D. W., Wang, S. G., Xie, X. L., et al, 2003. The Relationship between Supercontinent Evolution and Continental Crustal Growth from the Positive ΕNd Granites in Central Asia. ActaGeologicaSinica, 77(2):203-209 (in Chinese).
      Hong, D. W., Zhang, J. S., Wang, T., et al., 2004. Continental Crustal Growth and the Supercontinental Cycle:Evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 23(5):799-813. https://doi.org/10.1016/s1367-9120(03)00134-2
      Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang:Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1/2):15-51. https://doi.org/10.1016/s0040-1951(00)00176-1
      Huang, H., Wang, T., Tong, Y., et al., 2020. Rejuvenation of Ancient Micro-Continents during Accretionary Orogenesis: Insights from the Yili Block and Adjacent Regions of the SW Central Asian Orogenic Belt. Earth-Science Reviews, 103255. https://doi.org/10.1016/j.earscirev.2020.103255
      Jahn, B. M., 2010. Accretionary Orogen and Evolution of the Japanese Islands:Implications from a Sr-Nd Isotopic Study of the Phanerozoic Granitoids from SW Japan. American Journal of Science, 310(10):1210-1249. https://doi.org/10.2475/10.2010.02
      Jahn, B. M., Usuki, M., Usuki, T., et al., 2014. Generation of Cenozoic Granitoids in Hokkaido (Japan):Constraints from Zircon Geochronology, Sr-Nd-Hf Isotopic and Geochemical Analyses, and Implications for Crustal Growth. American Journal of Science, 314(2):704-750. https://doi.org/10.2475/02.2014.09
      Jahn, B. M., Wu, F. Y., Hong, D. W., 2000a. Important Crustal Growth in the Phanerozoic:Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 109(1):5-20. https://doi.org/10.1007/bf02719146
      Jahn, B. M., Wu, F. Y., Chen, B., 2000b. Massive Granitoid Generation in Central Asia:Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2):82-92. https://doi.org/10.18814/epiiugs/2000/v23i2/001
      Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1):73-100. https://doi.org/10.1144/gsl.sp.2004.226.01.05
      Kemp, A. I. S., Hawkesworth, C. J., 2009. Generation and Secular Evolution of the Continental Crust. The Crust, 3:349.
      Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., et al., 2004. Isotope Provinces, Mechanisms of Generation and Sources of the Continental Crust in the Central Asian Mobile Belt:Geological and Isotopic Evidence. Journal of Asian Earth Sciences, 23(5):605-627. https://doi.org/10.1016/s1367-9120(03)00130-5
      Kröner, A., Kovach, V., Alexeiev, D., et al., 2017. No Excessive Crustal Growth in the Central Asian Orogenic Belt:Further Evidence from Field Relationships and Isotopic Data. Gondwana Research, 50:135-166. https://doi.org/10.1016/j.gr.2017.04.006
      Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1):103-125. https://doi.org/10.1016/j.gr.2012.12.023
      Kröner, A., Kovach, V. P., Kozakov, I. K., et al., 2015. Zircon Ages and Nd-Hf Isotopes in UHT Granulites of the Ider Complex:A Cratonic Terrane within the Central Asian Orogenic Belt in NW Mongolia. Gondwana Research, 27(4):1392-1406. https://doi.org/10.1016/j.gr.2014.03.005
      Lee, C. T. A., Morton, D. M., Kistler, R. W., et al., 2007. Petrology and Tectonics of Phanerozoic Continent Formation:From Island Arcs to Accretion and Continental Arc Magmatism. Earth and Planetary Science Letters, 263(3/4):370-387. https://doi.org/10.1016/j.epsl.2007.09.025
      Li, P. F., Sun, M., Shu, C. T., et al., 2019. Evolution of the Central Asian Orogenic Belt along the Siberian Margin from Neoproterozoic-Early Paleozoic Accretion to Devonian Trench Retreat and a Comparison with Phanerozoic Eastern Australia. Earth-Science Reviews, 198:102951. https://doi.org/10.1016/j.earscirev.2019.102951
      Maruyama, S., 1997. Pacific-Type Orogeny Revisited:Miyashiro-Type Orogeny Proposed. The Island Arc, 6(1):91-120. https://doi.org/10.1111/j.1440-1738.1997.tb00042.x
      McCulloch, M. T., Bennett, V. C., 1994. Progressive Growth of the Earth's Continental Crust and Depleted Mantle:Geochemical Constraints. Geochimica et Cosmochimica Acta, 58(21):4717-4738. https://doi.org/10.1016/0016-7037(94)90203-8
      Mo, X. X. 2011. Magma and Magmatic Rocks:"Probes" and Evolution Records in the Deep Earth. Journal of Nature, 33 (5):255-259 (in Chinese).
      Mole, D. R., Fiorentini, M. L., Cassidy, K. F., et al., 2013. Crustal Evolution, Intra-Cratonic Architecture and the Metallogeny of an Archaean Craton. Geological Society, London, Special Publications, 393(1):23-80. https://doi.org/10.1144/sp393.8
      Moyen, J. F., Laurent, O., Chelle-Michou, C., et al., 2017. Collision Vs. Subduction-Related Magmatism:Two Contrasting Ways of Granite Formation and Implications for Crustal Growth. Lithos, 277:154-177. https://doi.org/10.1016/j.lithos.2016.09.018
      Murphy, J. B., Nance, R. D., 2002. Sm-Nd Isotopic Systematics as Tectonic Tracers:An Example from West Avalonia in the Canadian Appalachians. Earth-Science Reviews, 59(1/2/3/4):77-100. https://doi.org/10.1016/s0012-8252(02)00070-3
      Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis. Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      Patchett, 2003. Ages and Growth of the Continental Crust from Radiogenic Isotopes. Treatise on Geochemistry, Volume 3: 321-34.
      Robinson, P. T., Trumbull, R. B., Schmitt, A., et al., 2015. The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites. Gondwana Research, 27(2):486-506. https://doi.org/10.1016/j.gr.2014.06.003
      Royden, L. H., 1993. The Tectonic Expression Slab Pull at Continental Convergent Boundaries. Tectonics, 12(2):303-325. https://doi.org/10.1029/92tc02248
      Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557):571-578. https://doi.org/10.1038/378571a0
      Rudnick, R., Gao S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochmica Et Cosmochimica Acta.
      Safonova, I., 2017. Juvenile Versus Recycled Crust in the Central Asian Orogenic Belt:Implications from Ocean Plate Stratigraphy, Blueschist Belts and Intra-Oceanic Arcs. Gondwana Research, 47:6-27. https://doi.org/10.1016/j.gr.2016.09.003
      Safonova, I. Y., Santosh, M., 2014. Accretionary Complexes in the Asia-Pacific Region:Tracing Archives of Ocean Plate Stratigraphy and Tracking Mantle Plumes. Gondwana Research, 25(1):126-158. https://doi.org/10.1016/j.gr.2012.10.008
      Scholl, D. W., von Huene, R., 2009. Implications of Estimated Magmatic Additions and Recycling Losses at the Subduction Zones of Accretionary (Non-Collisional) and Collisional (Suturing) Orogens. Geological Society, London, Special Publications, 318(1):105-125. https://doi.org/10.1144/sp318.4
      Seltmann, R., Konopelko, D., Biske, G., et al., 2011. Hercynian Post-Collisional Magmatism in the Context of Paleozoic Magmatic Evolution of the Tien Shan Orogenic Belt. Journal of Asian Earth Sciences, 42(5):821-838. https://doi.org/10.1016/j.jseaes.2010.08.016
      Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435):299-307. https://doi.org/10.1038/364299a0
      Sisson, V. B., Roeske, S., Pavlis, T. L. (Editors), 2003. Geology of a Transpressional Orogen Developed During Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper 371. Geological Society of America, Boulder, Colorado: 375.
      Song, P., Wang, T., Tong, Y., et al., 2019. Contrasting Deep Crustal Compositions between the Altai and East Junggar Orogens, SW Central Asian Orogenic Belt: Evidence from Zircon Hf Isotopic Mapping. Lithos, 328-329: 297-311. https://doi.org/10.1016/j.lithos.2018.12.039
      Spencer, C. J., Roberts, N. M. W., Santosh, M., 2017. Growth, Destruction, and Preservation of Earth's Continental Crust. Earth-Science Reviews, 172:87-106. https://doi.org/10.1016/j.earscirev.2017.07.013
      Stern, R. J., Ali, K. A., Liegeois, J. P., et al., 2010. Distribution and Significance of Pre-Neoproterozoic Zircons in Juvenile Neoproterozoic Igneous Rocks of the Arabian-Nubian Shield. American Journal of Science, 310(9):791-811. https://doi.org/10.2475/09.2010.02
      Stern, R. J., Scholl, D. W., 2010. Yin and Yang of Continental Crust Creation and Destruction by Plate Tectonic Processes. International Geology Review, 52(1):1-31. https://doi.org/10.1080/00206810903332322
      Sun, M., Yuan, C., Xiao, W. J., et al., 2008. Zircon U-Pb and Hf Isotopic Study of Gneissic Rocks from the Chinese Altai:Progressive Accretionary History in the Early to Middle Palaeozoic. Chemical Geology, 247(3/4):352-383. https://doi.org/10.1016/j.chemgeo.2007.10.026
      Tang, G. J., Chung, S. L., Hawkesworth, C. J., et al., 2017. Short Episodes of Crust Generation during Protracted Accretionary Processes:Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464:142-154. doi: 10.1016/j.epsl.2017.02.022
      Van Staal, C. R., Barr, S. M., Murphy, J. B., 2012. Provenance and Tectonic Evolution of Ganderia:Constraints on the Evolution of the Iapetus and Rheic Oceans. Geology, 40(11):987-990. https://doi.org/10.1130/g33302.1
      Wang, T., Li, W. P., Li, J. B., et al., 2008. Increase of Juvenal Mantle-Derived Composition from Syn-Orogenic to Post-Orogenic Granites of the East Part of the Eastern Tianshan(China) and Implications for Continental Vertical Growth:Sr and Nd Isotopic Evidence. Acta Geologica Sinica, 24(4):762-772 (in Chinese).
      Wang, T., Jahn, B. M., Kovach, V. P., et al., 2009. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1/2/3/4):359-372. https://doi.org/10.1016/j.lithos.2009.02.001
      Wang, T., Tong, Y., Zhang, L., et al., 2017a. Phanerozoic Granitoids in the Central and Eastern Parts of Central Asia and their Tectonic Significance. Journal of Asian Earth Sciences, 145:368-392. https://doi.org/10.1016/j.jseaes.2017.06.029
      Wang, T., Gladkochub, D., Hou Z. Q., et al., 2017b.Orogenic Architecture and Crustal Growth from Accretion to Collision. IGCP Application (IGCP-662 Project).
      Wang, T., Wang, X. X, Guo, L., et al. 2017. Granite and Tectonics. Acta PetrologicaS inica, 33 (05):1459-1478 (in Chinese).
      Wang, T., and Hou Z. Q., 2018. Isotopic Mapping and Deep Material Probing(Ⅰ):Revealing the Compositional Evolution of the Lithosphere and Crustal Growth Processes. Earth Science Frontiers, 25(6):1-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201806003.htm
      Wang, X. X., Wang, T., Castro, A., et al., 2015. Proterozoic Rapakivi Granites from the North Qaidam Orogen, NW China:Implications for Basement Attribution. Gondwana Research, 28(4):1516-1529. https://doi.org/10.1016/j.gr.2014.09.018
      Wang, X. X., Wang, T., Ke, C. H., et al., 2015. Nd-Hf Isotopic Mapping of Late Mesozoic Granitoids in the East Qinling Orogen, Central China:Constraint on the Basements of Terranes and Distribution of Mo Mineralization. Journal of Asian Earth Sciences, 103:169-183. https://doi.org/10.1016/j.jseaes.2014.07.002
      Wang, Z. Q., Yan, Q. R., Yan, Z., et al. 2009. New Division of Main Tectonic Units in the Qinling Orogenic Belt. Acta Geologica Sinica, 83 (11):1527-1546 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200911001
      Wilhem, C., Windley, B. F., Stampfli, G. M., 2012. The Altaids of Central Asia:A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews, 113(3/4):303-341. https://doi.org/10.1016/j.earscirev.2012.04.001
      Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022
      Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1/2):89-113. https://doi.org/10.1016/s0040-1951(00)00179-7
      Wu, Y.B., 2019. Paleozoic Magmatism in the Qinling Orogen and Its Geodynamic Significance. Earth Science, 44(12):4173-4177(in Chinese with English abstract).
      Xiao, W. J., Windley, B. F., Han, C. M., et al., 2017. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186:94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
      Xiao, W. J., Windley, B. F., Sun, S., Li, et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia:Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1):477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      Xu, X. W., Li, X. H., Jiang, N., et al., 2015. Basement Nature and Origin of the Junggar Terrane:New Zircon U-Pb-Hf Isotope Evidence from Paleozoic Rocks and their Enclaves. Gondwana Research, 28(1):288-310. https://doi.org/10.1016/j.gr.2014.03.011
      Yang, Q. D., Wang, T., Guo, L., et al., 2017. Nd Isotopic Variation of Paleozoic-Mesozoic Granitoids from the Da Hinggan Mountains and Adjacent Areas, NE Asia:Implications for the Architecture and Growth of Continental Crust. Lithos, 272-273:164-184. https://doi.org/10.1016/j.lithos.2016.11.015
      Yan, Z., Wang, Z. Q, Li, J. L., et al., 2012. Tectonic Properties of the Western Qinling Wedge and Their Accretionary OrogenicProcesses. Acta Petrologica Sinica, 28 (06):1808-1828 (in Chinese).
      Zhang, J., Wang, T., Tong, Y., et al., 2017. Tracking Deep Ancient Crustal Components by Xenocrystic/inherited Zircons of Palaeozoic Felsic Igneous Rocks from the Altai-East Junggar Terrane and Adjacent Regions, Western Central Asian Orogenic Belt and its Tectonic Significance. International Geology Review, 59(16):2021-2040. https://doi.org/10.1080/00206814.2017.1308841
      Zhang, J. J., Wang, T., Zhang, L., et al., 2015. Tracking Deep Crust by Zircon Xenocrysts within Igneous Rocks from the Northern Alxa, China:Constraints on the Southern Boundary of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 108:150-169. https://doi.org/10.1016/j.jseaes.2015.04.019
      Zheng, Y.F., Chen, Y.X, 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983(in Chinese with English abstract).
      Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186:76-93. https://doi.org/10.1016/j.earscirev.2017.01.012
      Zhou, X. H., Chen, W. J. 2001. Sr-Nd-Pb Isotope Mapping of the Late Mesozoic Volcanic Rocks in the Northern Margin of the North China Craton and Its Tectonic Significance. Geochemistry, 30 (1):10-23 (in Chinese).
      Zimmermann, S., Hall, R., 2016. Provenance of Triassic and Jurassic Sandstones in the Banda Arc:Petrography, Heavy Minerals and Zircon Geochronology. Gondwana Research, 37:1-19. https://doi.org/10.1016/j.gr.2016.06.001
      韩宝福, 何国琦, 王式洸, 等, 1998.新疆北部碰撞后幔源岩浆活动与陆壳纵向生长.地质论评, 44:396-409. doi: 10.3321/j.issn:0371-5736.1998.04.009
      韩宝福, 季建清, 宋彪, 等, 2006.新疆准噶尔晚古生代陆壳垂向生长(1)——后碰撞深成岩浆活动的时限.岩石学报, 22(5):1077-1086. http://d.wanfangdata.com.cn/periodical/ysxb98200605003
      洪大卫, 王式洸, 谢锡林, 等, 2000.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长.地学前缘, 7(2):441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012
      洪大卫, 王式光, 谢锡林, 等, 2003.从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系.地质学报, 77(2):203-209. doi: 10.3321/j.issn:0001-5717.2003.02.008
      莫宣学, 2011.岩浆与岩浆岩:地球深部"探针"与演化记录.自然杂志, 33(5):255-259. http://qikan.cqvip.com/Qikan/Article/Detail?id=39656172
      王涛, 李伍平, 李金宝, 等, 2008.东天山东段同造山到后造山花岗岩幔源组分的递增及陆壳垂向生长意义——Sr、Nd同位素证据.岩石学报, 24(04):762-772. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200804015
      王涛, 王晓霞, 郭磊, 等, 2017.花岗岩与大地构造.岩石学报, 33(5):1459-1478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705006
      王涛, 侯增谦.2018.同位素填图与深部物质探测(Ⅰ):揭示岩石圈组成演变与地壳生长.地学前缘, 25(6):1-19. http://d.wanfangdata.com.cn/periodical/dxqy201806003
      王宗起, 闫全人, 闫臻, 等, 2009.秦岭造山带主要大地构造单元的新划分.地质学报, 83(11):1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001
      吴元保, 2019.秦岭造山带古生代岩浆作用及地球动力学意义.地球科学, 44(12):4173-4177. doi: 10.3799/dqkx.2019.266
      闫臻, 王宗起, 李继亮, 等, 2012.西秦岭楔的构造属性及其增生造山过程.岩石学报, 28(6):1808-1828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201206008
      郑永飞, 陈伊翔, 2019.大陆俯冲带壳幔相互作用.地球科学, 44(12):3961-3983. doi: 10.3799/dqkx.2019.982
      周新华, 陈文寄. 2001.华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义.地球化学, 30(1):10-23. doi: 10.3321/j.issn:0379-1726.2001.01.003
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (2059) PDF downloads(244) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return