Citation: | Liu Ting, Zheng Youye, Wu Jun, 2021. Genesis of Fuchuan Chromitites at South Anhui, Implications from the Parental Melts. Earth Science, 46(5): 1613-1629. doi: 10.3799/dqkx.2020.198 |
Anhui Bureau of Geology and Mineral Resources, 1987. Regional Geological Map of Anhui Province, China (Scale 1∶500 000), 4 Sheets. Geological Publishing House, Beijing (in Chinese).
|
Arai, S., 1994. Characterization of Spinel Peridotites by Olivine-Spinel Compositional Relationships: Review and Interpretation. Chemical Geology, 113(3-4): 191-204. https://doi.org/10.1016/0009-2541(94)90066-3
|
Arai, S., Miura, M., 2016. Formation and Modification of Chromitites in the Mantle. Lithos, 264: 277-295. https://doi.org/10.1016/j.lithos.2016.08.039
|
Bai, W. J., Yang, J. S., Robinson, P. T., et al., 2001. Study of Diamonds from Chromitites in the Luobusa Ophiolite, Tibet. Acta Geologica Sinica, (3): 404-409 (in Chinese with English abstract).
|
Ballhaus, C., Berry, R. F., Green, D. H., 1991. High Pressure Experimental Calibration of the Olivine-Orthopyroxene-Spinel Oxygen Geobarometer: Implications for the Oxidation State of the Upper Mantle. Contributions to Mineralogy and Petrology, 107(1): 27-40. https://doi.org/10.1007/BF00311183
|
Barnes, S. J., Roeder, P. L., 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology, 42(12): 2279-2302. https://doi.org/10.1093/petrology/42.12.2279
|
Chen, Y.H., Yang, J.S., 2018. Formation of Podiform Chromitite Deposits: Review and Prospects. Earth Science, 43(4): 991-1010 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201804005.htm
|
Cottrell, E., Kelley, K. A., 2011. The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle. Earth and Planetary Science Letters, 305(3-4): 270-282. https://doi.org/10.1016/j.epsl.2011.03.014
|
Dare, S. A. S., Pearce, J. A., Mcdonald I., et al., 2009. Tectonic Discrimination of Peridotites Using fo2-Cr# and Ga-Ti-FeⅢ Systematics in Chrome-Spinel. Chemical Geology, 261(3 - 4): 199-216. https://doi.org/10.1016/j.chemgeo.2008.08.002
|
Dick, H. J. B., Bullen, T., 1984. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76. https://doi.org/10.1007/BF00373711
|
Ding, B.H., Shi, R.D., Zhi, X.C., et al., 2008. Neoproterozoic (about 850 Ma) Subduction in the Jiangnan Orogen: Evidence from the SHRIMP U-Pb Dating of the SSZ-Type Ophiolite in Southern Anhui Province. Acta Petrologica et Mineralogica, 27(5): 375-388 (in Chinese with English abstract).
|
Droop, G. T. R., 1987. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses, Using Stoichiometric Criteria. Mineralogical Magazine, 51: 431-435. https://doi.org/10.1180/minmag.1987.051.361.10
|
Garuti, G., Pushkarev, E. V., Thalhammer, O. A. R., et al., 2012. Chromitites of the Urals (Part 1): Overview of Chromite Mineral Chemistry and Geotectonic Setting. Ofioliti, 37(1): 27-53. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220121000281609
|
Irvine, T. N., 1965. Chromian Spinel as a Petrogenetic Indicator Part 1, Theory. Canadian Journal of Earth Science, 2: 648-673. https://doi.org/10.1139/e65-046
|
Kamenetsky, V. S., Crawford, A. J., Meffre, S., 2001. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 42(4): 655-671. https://doi.org/10.1093/petrology/42.4.655
|
Lian, D. Y., Yang, J. S., Liu, F., et al., 2019. Diamond Classification, Compositional Characteristics, and Research Progress: A Review. Earth Science, 44(10): 3409-3453 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910017.htm
|
Liu, T., Zheng, Y.Y., Guo, T.J., 2019a. Optimal Geochemical Features of Medium and Large-Sized Podiform Chromite Ores. Geological Science and Technology Information, 38(2): 217-225 (in Chinese with English abstract).
|
Liu, T., Zheng, Y.Y., Wang, P.C., et al., 2019b. Geochemical Indicator for Podiform Chromite Mineralization and Its Formation Mechanism. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 176-183, 194 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201901020.htm
|
Liu, X., Su, B.X., Bai, Y., et al., 2018. Ca-Enrichment Characteristics of Parental Magmas of Chromitite in Ophiolite: Inference from Mineral Inclusions. Earth Science, 43(4): 1038-1050 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201804008.htm
|
Maurel, C., Maurel, P., 1982. Étude Expérimental de la Distribution de L'aluminium Entre Bain Silicate Basique et Spinelle Chromifére. Implications Pétrogenetiques: Teneur en Chrome des Spinelles. Bulletin de Mineralogie, 105: 197-202. https: //doi.org/10.3406/bulmi.1982.7605
|
Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55-76. https://doi.org/10.1007/BF01226262
|
Najafzadeh, A. R., 2017. Mineralogy and Composition of Chromitites and Host Peridotites from the Colkahan Ultramafic Complex (Nazdasht Mine), Kerman, Southeastern Iran. Mineralogy and Petrology, 111(3): 337-350. https://doi.org/10.1007/s00710-016-0479-6
|
Ni, X. Y., Ba, D. Z., Yang, M. T., 1992. Texture and Structure of Upper Mantle Peridotites and Chromitites in Tibet. China University of Geosciences Press, China(in Chinese).
|
No. 332 Geological Team of Anhui Bureau of Geology and Mineral Exploration, 1962. Report on the Geochemical Ore Exploration of Ultramafic Rocks at the East Shexian, Anhui Province (in Chinese).
|
Pagé, P., Barnes, S., 2009. Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Québec, Canada. Economic Geology, 104: 997-1018. https://doi.org/10.2113/gsecongeo.104.7.997
|
Pagé, P., Bédard, J. H., Schroetter, J., et al., 2008. Mantle Petrology and Mineralogy of the Thetford Mines Ophiolite Complex. Lithos, 100: 255-292. https://doi.org/10.1016/j.lithos.2007.06.017
|
Pearce, J. A., Barker, P. F., Edwards, S. J., et al., 2000. Geochemistry and Tectonic Significance of Peridotites from the South Sandwich Arc-Basin System, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36-53. https://doi.org/10.1007/s004100050572
|
Rollinson, H., 2005. Chromite in the Mantle Section of the Oman Ophiolite: A New Genetic Model. Island Arc, 14(4): 542-550. https://doi.org/10.1111/j.1440-1738.2005.00482.x
|
Rollinson, H., 2008. The Geochemistry of Mantle Chromitites from the Northern Part of the Oman Ophiolite: Inferred Parental Melt Compositions. Contributions to Mineralogy and Petrology, 156(3): 273-288. https://doi.org/10.1007/s00410-008-0284-2
|
Rollinson, H., Adetunji, J., Yousif, A. A., et al., 2012. New Mössbauer Measurements of Fe3+ / ΣFe in Chromites from the Mantle Section of the Oman Ophiolite: Evidence for the Oxidation of the Sub-Oceanic Mantle. Mineralogical Magazine, 76(3): 579-596. https://doi.org/10.1180/minmag.2012.076.3.09
|
Shu, L. S., Wang, J. Q., Yao J. L., 2019. Tectonic Evolution of the Eastern Jiangnan Region, South China: New Findings and Implications on the Assembly of the Rodinia Supercontinent. Precambrian Research, 322: 42-65. https://doi.org/10.1016/j.precamres.2018.12.007
|
Tamura, A., Arai, S., 2006. Harzburgite-Dunite-Orthopyroxenite Suite as a Record of Supra-Subduction Zone Setting for the Oman Ophiolite Mantle. Lithos, 90: 43-56. https://doi.org/10.1016/j.lithos.2005.12.012
|
Tian, Y. Z., 2015. Genesis of High-Al Chromitite of the Sartohay Ophiolite, Xinjiang (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
|
Uysal, I., Akmaz, R. M., Kapsiotis, A., et al., 2015. Genesis and Geodynamic Significance of Chromitites from the Orhaneli and Harmancık Ophiolites (Bursa, NW Turkey) as Evidenced by Mineralogical and Compositional Data. Ore Geology Reviews, 65: 26-41. https://doi.org/10.1016/j.oregeorev.2014.08.006
|
Whattam, S. A., Stern, R. J., 2011. The 'Subduction Initiation Rule': A Key for Linking Ophiolites, Intra-Oceanic Forearcs, and Subduction Initiation. Contributions to Mineralogy and Petrology, 162(5): 1031-1045. https://doi.org/10.1007/s00410-011-0638-z
|
Yamamoto, S., Komiya, T., Hirose, K., et al., 2009. Coesite and Clinopyroxene Exsolution Lamellae in Chromites: In-Situ Ultrahigh Pressure Evidence from Podiform Chromites in the Luobusa Ophiolite, Southern Tibet. Lithos, 109: 314-322. https://doi.org/10.1016/j.lithos.2008.05.003
|
Yang, J. S., Ba, D. Z., Xu, X. Z., et al., 2010. A Restudy of Podiform Chromite Deposits and Their Ore Prospecting Vista in China. Geology in China, 37(4): 1141-1150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004030.htm
|
Zhang, C. L., Santosh, M., Zou, H. B., et al., 2013. The Fuchuan Ophiolite in Jiangnan Orogen: Geochemistry, Zircon U-Pb Geochronology, Hf Isotope and Implications for the Neoproterozoic Assembly of South China. Lithos, 179: 263-274. doi: 10.1016/j.lithos.2013.08.015
|
Zhou, M. F., Robinson, P. T., 1994. High-Cr and High-Al Podiform Chromitites, Western China: Relationship to Partial Melting and Melt/Rock Reaction in the Upper Mantle. International Geology Review, 36(7): 678-686. https://doi.org/10.1080/00206819409465481
|
Zhou, M. F., Robinson, P. T., Malpas, J., et al., 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1): 3-21. https://doi.org/10.1093/petrology/37.1.3
|
Zhou, W. T., 2016. Characteristic and Tectonic Significances of Zonal Spinel in Northeastern Jiangxi Ophiolite (Dissertation). East China Institute of Technology, Nanchang (in Chinese with English abstract).
|
Zhou, X. M., Zou, H. B., Yang, J. D., et al., 1989. Sm-Nd Isochronous Age of Fuchuan Ophiolite Suite in Shexian County, Anhui Province and Its Geological Significance. Chinese Science Bulletin, (16): 1243-1245 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW199003006.htm
|
安徽省地质矿产局, 1987. 安徽省区域地质图(1∶500 000), 四幅. 北京: 地质出版社.
|
白文吉, 杨经绥, Robinson, P. T., 等, 2001. 西藏罗布莎蛇绿岩铬铁矿中金刚石的研究. 地质学报, (3): 404-409. doi: 10.3321/j.issn:0001-5717.2001.03.014
|
陈艳虹, 杨经绥, 2018. 豆荚状铬铁矿床研究回顾与展望. 地球科学, 43(4): 991-1010. doi: 10.3799/dqkx.2018.704
|
丁炳华, 史仁灯, 支霞臣, 等, 2008. 江南造山带存在新元古代(~850 Ma)俯冲作用: 来自皖南SSZ型蛇绿岩锆石SHRIMP U-Pb年龄证据. 岩石矿物学杂志, 27(5): 375-388. doi: 10.3969/j.issn.1000-6524.2008.05.001
|
连东洋, 杨经绥, 刘飞, 等, 2019. 金刚石分类、组成特征以及我国金刚石研究展望. 地球科学, 44(10): 3409-3453. doi: 10.3799/dqkx.2018.392
|
刘婷, 郑有业, 郭统军, 2019a. 大中型豆荚状铬铁矿床地球化学特征研究. 地质科技情报, 38(2): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902025.htm
|
刘婷, 郑有业, 王朋冲, 等, 2019b. 豆荚状铬铁矿床成矿地球化学指标对比和成矿作用讨论. 矿物岩石地球化学通报, 38(1): 176-183, 194. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201901020.htm
|
刘霞, 苏本勋, 白洋, 等, 2018. 蛇绿岩中铬铁岩母岩浆的富Ca特征: 矿物包裹体证据. 地球科学, 43(4): 1038-1050. doi: 10.3799/dqkx.2018.707
|
倪心垣, 巴登珠, 杨茂同, 1992. 西藏上地幔橄榄岩及铬铁矿石结构构造图册. 武汉: 中国地质大学出版社.
|
安徽省地质矿产勘查局332地质队, 1962. 安徽省歙县东部地区超基性岩地球化学普查找矿工作报告.
|
田亚洲, 2015. 新疆萨尔托海蛇绿岩中高铝型铬铁矿成因(博士学位论文). 北京: 中国地质科学院.
|
杨经绥, 巴登珠, 徐向珍, 等, 2010. 中国铬铁矿床的再研究及找矿前景. 中国地质, 37(4): 1141-1150. doi: 10.3969/j.issn.1000-3657.2010.04.028
|
周文婷, 2016. 赣东北蛇绿混杂岩岩石地球化学特征及构造意义(硕士学位论文). 南昌: 东华理工大学.
|
周新民, 邹海波, 杨杰东, 等, 1989. 安徽歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义. 科学通报, (16): 1243-1245. doi: 10.3321/j.issn:0023-074X.1989.16.003
|