• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 5
    May  2021
    Turn off MathJax
    Article Contents
    Liu Ting, Zheng Youye, Wu Jun, 2021. Genesis of Fuchuan Chromitites at South Anhui, Implications from the Parental Melts. Earth Science, 46(5): 1613-1629. doi: 10.3799/dqkx.2020.198
    Citation: Liu Ting, Zheng Youye, Wu Jun, 2021. Genesis of Fuchuan Chromitites at South Anhui, Implications from the Parental Melts. Earth Science, 46(5): 1613-1629. doi: 10.3799/dqkx.2020.198

    Genesis of Fuchuan Chromitites at South Anhui, Implications from the Parental Melts

    doi: 10.3799/dqkx.2020.198
    • Received Date: 2020-06-04
    • Publish Date: 2021-05-15
    • South Anhui ophiolite, one of the oldest ophiolites in southern China, is located in the northeastern most segment of Jiangnan orogen. The ultramafic rocks in this area are extensively serpentinized which constrains the researches here and it is challenging for further studies. In order to investigate the origin of the South Anhui ophiolites and the Fuchuan chromitites, detailed observation with microscope and electron probe micro-analyzer was made for the mineralogy analysis of chromites and paragenetic minerals in harzburgites and chromitites. The chromites can be divided into two types, namely, type Ⅰ with kämmererite as the gangue mineral, and type Ⅱ with diallage as the gangue mineral. All the chromites are typical Alpine-type high aluminum chromites, most of which develop fractures, and along the rim and fractures are altered into ferritchromite. The unaltered core part of the chromites which retains the pristine composition was studied, and the spinels in harzburgites are characterized by moderate Cr# (100×Cr/(Cr+Al), 54.12-65.18) and low Mg# (100×Mg/(Mg+Fe2+), 42.37-54.84), and those of the chromites from the chromitites are 53.97-62.29 and 59.49-68.57, respectively. The calculated component of parental melts of the chromitites is similar to MORB (mid-ocean ridge basalt), indicating the derivation from MORB. The oxygen fugacity is low (-0.14 to +0.68log(QFM)), showing the feature of transition from MORB to SSZ (suprasubduction zone) setting. Combining with the field phenomena, it is believed that chromitites might be formed from the interaction of peridotites and MORB, and together with the SSZ feature of the harzburgites, reflecting that the formation of South Anhui ophiolites might be the result of the combined effect of partial melting of the peridotites, rock-melt interaction, and plate subduction, which provides vital evidence for the tectonic and evolution of the Jiangnan orogen.

       

    • loading
    • Anhui Bureau of Geology and Mineral Resources, 1987. Regional Geological Map of Anhui Province, China (Scale 1∶500 000), 4 Sheets. Geological Publishing House, Beijing (in Chinese).
      Arai, S., 1994. Characterization of Spinel Peridotites by Olivine-Spinel Compositional Relationships: Review and Interpretation. Chemical Geology, 113(3-4): 191-204. https://doi.org/10.1016/0009-2541(94)90066-3
      Arai, S., Miura, M., 2016. Formation and Modification of Chromitites in the Mantle. Lithos, 264: 277-295. https://doi.org/10.1016/j.lithos.2016.08.039
      Bai, W. J., Yang, J. S., Robinson, P. T., et al., 2001. Study of Diamonds from Chromitites in the Luobusa Ophiolite, Tibet. Acta Geologica Sinica, (3): 404-409 (in Chinese with English abstract).
      Ballhaus, C., Berry, R. F., Green, D. H., 1991. High Pressure Experimental Calibration of the Olivine-Orthopyroxene-Spinel Oxygen Geobarometer: Implications for the Oxidation State of the Upper Mantle. Contributions to Mineralogy and Petrology, 107(1): 27-40. https://doi.org/10.1007/BF00311183
      Barnes, S. J., Roeder, P. L., 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology, 42(12): 2279-2302. https://doi.org/10.1093/petrology/42.12.2279
      Chen, Y.H., Yang, J.S., 2018. Formation of Podiform Chromitite Deposits: Review and Prospects. Earth Science, 43(4): 991-1010 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201804005.htm
      Cottrell, E., Kelley, K. A., 2011. The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle. Earth and Planetary Science Letters, 305(3-4): 270-282. https://doi.org/10.1016/j.epsl.2011.03.014
      Dare, S. A. S., Pearce, J. A., Mcdonald I., et al., 2009. Tectonic Discrimination of Peridotites Using fo2-Cr# and Ga-Ti-Fe Systematics in Chrome-Spinel. Chemical Geology, 261(3 - 4): 199-216. https://doi.org/10.1016/j.chemgeo.2008.08.002
      Dick, H. J. B., Bullen, T., 1984. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76. https://doi.org/10.1007/BF00373711
      Ding, B.H., Shi, R.D., Zhi, X.C., et al., 2008. Neoproterozoic (about 850 Ma) Subduction in the Jiangnan Orogen: Evidence from the SHRIMP U-Pb Dating of the SSZ-Type Ophiolite in Southern Anhui Province. Acta Petrologica et Mineralogica, 27(5): 375-388 (in Chinese with English abstract).
      Droop, G. T. R., 1987. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses, Using Stoichiometric Criteria. Mineralogical Magazine, 51: 431-435. https://doi.org/10.1180/minmag.1987.051.361.10
      Garuti, G., Pushkarev, E. V., Thalhammer, O. A. R., et al., 2012. Chromitites of the Urals (Part 1): Overview of Chromite Mineral Chemistry and Geotectonic Setting. Ofioliti, 37(1): 27-53. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220121000281609
      Irvine, T. N., 1965. Chromian Spinel as a Petrogenetic Indicator Part 1, Theory. Canadian Journal of Earth Science, 2: 648-673. https://doi.org/10.1139/e65-046
      Kamenetsky, V. S., Crawford, A. J., Meffre, S., 2001. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 42(4): 655-671. https://doi.org/10.1093/petrology/42.4.655
      Lian, D. Y., Yang, J. S., Liu, F., et al., 2019. Diamond Classification, Compositional Characteristics, and Research Progress: A Review. Earth Science, 44(10): 3409-3453 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910017.htm
      Liu, T., Zheng, Y.Y., Guo, T.J., 2019a. Optimal Geochemical Features of Medium and Large-Sized Podiform Chromite Ores. Geological Science and Technology Information, 38(2): 217-225 (in Chinese with English abstract).
      Liu, T., Zheng, Y.Y., Wang, P.C., et al., 2019b. Geochemical Indicator for Podiform Chromite Mineralization and Its Formation Mechanism. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 176-183, 194 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201901020.htm
      Liu, X., Su, B.X., Bai, Y., et al., 2018. Ca-Enrichment Characteristics of Parental Magmas of Chromitite in Ophiolite: Inference from Mineral Inclusions. Earth Science, 43(4): 1038-1050 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201804008.htm
      Maurel, C., Maurel, P., 1982. Étude Expérimental de la Distribution de L'aluminium Entre Bain Silicate Basique et Spinelle Chromifére. Implications Pétrogenetiques: Teneur en Chrome des Spinelles. Bulletin de Mineralogie, 105: 197-202. https: //doi.org/10.3406/bulmi.1982.7605
      Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55-76. https://doi.org/10.1007/BF01226262
      Najafzadeh, A. R., 2017. Mineralogy and Composition of Chromitites and Host Peridotites from the Colkahan Ultramafic Complex (Nazdasht Mine), Kerman, Southeastern Iran. Mineralogy and Petrology, 111(3): 337-350. https://doi.org/10.1007/s00710-016-0479-6
      Ni, X. Y., Ba, D. Z., Yang, M. T., 1992. Texture and Structure of Upper Mantle Peridotites and Chromitites in Tibet. China University of Geosciences Press, China(in Chinese).
      No. 332 Geological Team of Anhui Bureau of Geology and Mineral Exploration, 1962. Report on the Geochemical Ore Exploration of Ultramafic Rocks at the East Shexian, Anhui Province (in Chinese).
      Pagé, P., Barnes, S., 2009. Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Québec, Canada. Economic Geology, 104: 997-1018. https://doi.org/10.2113/gsecongeo.104.7.997
      Pagé, P., Bédard, J. H., Schroetter, J., et al., 2008. Mantle Petrology and Mineralogy of the Thetford Mines Ophiolite Complex. Lithos, 100: 255-292. https://doi.org/10.1016/j.lithos.2007.06.017
      Pearce, J. A., Barker, P. F., Edwards, S. J., et al., 2000. Geochemistry and Tectonic Significance of Peridotites from the South Sandwich Arc-Basin System, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36-53. https://doi.org/10.1007/s004100050572
      Rollinson, H., 2005. Chromite in the Mantle Section of the Oman Ophiolite: A New Genetic Model. Island Arc, 14(4): 542-550. https://doi.org/10.1111/j.1440-1738.2005.00482.x
      Rollinson, H., 2008. The Geochemistry of Mantle Chromitites from the Northern Part of the Oman Ophiolite: Inferred Parental Melt Compositions. Contributions to Mineralogy and Petrology, 156(3): 273-288. https://doi.org/10.1007/s00410-008-0284-2
      Rollinson, H., Adetunji, J., Yousif, A. A., et al., 2012. New Mössbauer Measurements of Fe3+ / ΣFe in Chromites from the Mantle Section of the Oman Ophiolite: Evidence for the Oxidation of the Sub-Oceanic Mantle. Mineralogical Magazine, 76(3): 579-596. https://doi.org/10.1180/minmag.2012.076.3.09
      Shu, L. S., Wang, J. Q., Yao J. L., 2019. Tectonic Evolution of the Eastern Jiangnan Region, South China: New Findings and Implications on the Assembly of the Rodinia Supercontinent. Precambrian Research, 322: 42-65. https://doi.org/10.1016/j.precamres.2018.12.007
      Tamura, A., Arai, S., 2006. Harzburgite-Dunite-Orthopyroxenite Suite as a Record of Supra-Subduction Zone Setting for the Oman Ophiolite Mantle. Lithos, 90: 43-56. https://doi.org/10.1016/j.lithos.2005.12.012
      Tian, Y. Z., 2015. Genesis of High-Al Chromitite of the Sartohay Ophiolite, Xinjiang (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Uysal, I., Akmaz, R. M., Kapsiotis, A., et al., 2015. Genesis and Geodynamic Significance of Chromitites from the Orhaneli and Harmancık Ophiolites (Bursa, NW Turkey) as Evidenced by Mineralogical and Compositional Data. Ore Geology Reviews, 65: 26-41. https://doi.org/10.1016/j.oregeorev.2014.08.006
      Whattam, S. A., Stern, R. J., 2011. The 'Subduction Initiation Rule': A Key for Linking Ophiolites, Intra-Oceanic Forearcs, and Subduction Initiation. Contributions to Mineralogy and Petrology, 162(5): 1031-1045. https://doi.org/10.1007/s00410-011-0638-z
      Yamamoto, S., Komiya, T., Hirose, K., et al., 2009. Coesite and Clinopyroxene Exsolution Lamellae in Chromites: In-Situ Ultrahigh Pressure Evidence from Podiform Chromites in the Luobusa Ophiolite, Southern Tibet. Lithos, 109: 314-322. https://doi.org/10.1016/j.lithos.2008.05.003
      Yang, J. S., Ba, D. Z., Xu, X. Z., et al., 2010. A Restudy of Podiform Chromite Deposits and Their Ore Prospecting Vista in China. Geology in China, 37(4): 1141-1150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004030.htm
      Zhang, C. L., Santosh, M., Zou, H. B., et al., 2013. The Fuchuan Ophiolite in Jiangnan Orogen: Geochemistry, Zircon U-Pb Geochronology, Hf Isotope and Implications for the Neoproterozoic Assembly of South China. Lithos, 179: 263-274. doi: 10.1016/j.lithos.2013.08.015
      Zhou, M. F., Robinson, P. T., 1994. High-Cr and High-Al Podiform Chromitites, Western China: Relationship to Partial Melting and Melt/Rock Reaction in the Upper Mantle. International Geology Review, 36(7): 678-686. https://doi.org/10.1080/00206819409465481
      Zhou, M. F., Robinson, P. T., Malpas, J., et al., 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1): 3-21. https://doi.org/10.1093/petrology/37.1.3
      Zhou, W. T., 2016. Characteristic and Tectonic Significances of Zonal Spinel in Northeastern Jiangxi Ophiolite (Dissertation). East China Institute of Technology, Nanchang (in Chinese with English abstract).
      Zhou, X. M., Zou, H. B., Yang, J. D., et al., 1989. Sm-Nd Isochronous Age of Fuchuan Ophiolite Suite in Shexian County, Anhui Province and Its Geological Significance. Chinese Science Bulletin, (16): 1243-1245 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW199003006.htm
      安徽省地质矿产局, 1987. 安徽省区域地质图(1∶500 000), 四幅. 北京: 地质出版社.
      白文吉, 杨经绥, Robinson, P. T., 等, 2001. 西藏罗布莎蛇绿岩铬铁矿中金刚石的研究. 地质学报, (3): 404-409. doi: 10.3321/j.issn:0001-5717.2001.03.014
      陈艳虹, 杨经绥, 2018. 豆荚状铬铁矿床研究回顾与展望. 地球科学, 43(4): 991-1010. doi: 10.3799/dqkx.2018.704
      丁炳华, 史仁灯, 支霞臣, 等, 2008. 江南造山带存在新元古代(~850 Ma)俯冲作用: 来自皖南SSZ型蛇绿岩锆石SHRIMP U-Pb年龄证据. 岩石矿物学杂志, 27(5): 375-388. doi: 10.3969/j.issn.1000-6524.2008.05.001
      连东洋, 杨经绥, 刘飞, 等, 2019. 金刚石分类、组成特征以及我国金刚石研究展望. 地球科学, 44(10): 3409-3453. doi: 10.3799/dqkx.2018.392
      刘婷, 郑有业, 郭统军, 2019a. 大中型豆荚状铬铁矿床地球化学特征研究. 地质科技情报, 38(2): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902025.htm
      刘婷, 郑有业, 王朋冲, 等, 2019b. 豆荚状铬铁矿床成矿地球化学指标对比和成矿作用讨论. 矿物岩石地球化学通报, 38(1): 176-183, 194. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201901020.htm
      刘霞, 苏本勋, 白洋, 等, 2018. 蛇绿岩中铬铁岩母岩浆的富Ca特征: 矿物包裹体证据. 地球科学, 43(4): 1038-1050. doi: 10.3799/dqkx.2018.707
      倪心垣, 巴登珠, 杨茂同, 1992. 西藏上地幔橄榄岩及铬铁矿石结构构造图册. 武汉: 中国地质大学出版社.
      安徽省地质矿产勘查局332地质队, 1962. 安徽省歙县东部地区超基性岩地球化学普查找矿工作报告.
      田亚洲, 2015. 新疆萨尔托海蛇绿岩中高铝型铬铁矿成因(博士学位论文). 北京: 中国地质科学院.
      杨经绥, 巴登珠, 徐向珍, 等, 2010. 中国铬铁矿床的再研究及找矿前景. 中国地质, 37(4): 1141-1150. doi: 10.3969/j.issn.1000-3657.2010.04.028
      周文婷, 2016. 赣东北蛇绿混杂岩岩石地球化学特征及构造意义(硕士学位论文). 南昌: 东华理工大学.
      周新民, 邹海波, 杨杰东, 等, 1989. 安徽歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义. 科学通报, (16): 1243-1245. doi: 10.3321/j.issn:0023-074X.1989.16.003
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(3)

      Article views (1994) PDF downloads(91) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return