• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 7
    Jul.  2021
    Turn off MathJax
    Article Contents
    Su Nan, Yang Wei, Yuan Baoguo, Dai Xin, Wang Xiaodan, Wu Saijun, Ma Shiyu, Xie Wuren, Zhang Guangwu, Pei Yangwen, 2021. Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin. Earth Science, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202
    Citation: Su Nan, Yang Wei, Yuan Baoguo, Dai Xin, Wang Xiaodan, Wu Saijun, Ma Shiyu, Xie Wuren, Zhang Guangwu, Pei Yangwen, 2021. Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin. Earth Science, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202

    Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin

    doi: 10.3799/dqkx.2020.202
    • Received Date: 2020-07-10
    • Publish Date: 2021-07-15
    • Previous studies on fault systems mainly focused on thrust belts around the basin and Gaoshiti-Moxi area in central basion. For other areas of the basin, the features, evolution and stress field of fault system is not well understood. In this study, it is newly discovered that a regional transtensional fault system is developed in Zitong-Chengdu-Weiyuan-Huayingshan-Guangan area based on seismic data interpretation. The faults have similar features in the basin, mainly extending from strata of the Sinian system to the Permian system. The faults have vertical occurrence, small normal displacement and negative flower structure. Based on three evidences, it is inferred that the faults are developed in the Himalayan Period: (1) In the Weiyuan-Ziyang area with oblique formations, the fault are still vertical. So the faults are developed after the formation of the Weiyuan anticline which is developed in the Himalayan perioid. (2) Some faults, extending to strata of the Triassic-Jurassic, are of the same system of transtensional faults in the Sinian-Permian strata. Therefore the faults are developed later than the Late Indosinian Period. (3) The distribution of transtensional faults varies from the central part to the compressional areas around the basin, and the stress field of the basin started to vary from the Late Indosinian Period. Based on physical simulation, it is inferred that the faults were developed under torsional stress field. The development of the faults indicates that a NE-SW direction tensional stress field existed in Sichuan basin in the Cenozoic Period. The stress field may originated from the clockwise rotation of the Sichuan basin in the Cenozoic Period.

       

    • loading
    • Atmaoui, N., Kukowski, N., Stöckhert, B., et al., 2006. Initiation and Development of Pull⁃Apart Basins with Riedel Shear Mechanism: Insights from Scaled Clay Experiments. International Journal of Earth Sciences, 95(2): 225-238. https://doi.org/10.1007/s00531⁃005⁃0030⁃1
      Chen, Z.X., Jia, D., Zhang, Q., et al., 2005. Balanced Cross⁃Section Analysis of the Fold: Thrust Belt of the Longmen Mountains. Acta Geologica Sinica, 79(1): 38-45 (in Chinese with English abstract). http://www.researchgate.net/publication/279548725_Balanced_Cross-section_Analysis_of_the_Fold-Thrust_Belt_of_the_Longmen_Mountains?ev=auth_pub
      Deng, S., Li, H.L., Zhang, Z.P., et al., 2018. Characteristics of Differential Activities in Major Strike⁃Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878-888 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201805004.htm
      Deng, S., Li, H.L., Zhang, Z.P., et al., 2019. Structural Characterization of Intracratonic Strike⁃Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
      Han, X.Y., Deng, S., Tang, L.J., et al., 2017. Geometry, Kinematics and Displacement Characteristics of Strike⁃Slip Faults in the Northern Slope of Tazhong Uplift in Tarim Basin: A Study Based on 3D Seismic Data. MarineandPetroleum Geology, 88(20): 410-427. https://doi.org/10.1016/j.marpetgeo.2017.08.033
      Han, X.Y., Tang, L.J., Deng, S., et al., 2020. Spatial Characteristics and Controlling Factors of the Strike⁃Slip Fault Zones in the Northern Slope of Tazhong Uplift, Tarim Basin: Insight from 3D Seismic Data. Acta Geologica SinicaEnglish Edition, 94(2): 516-529. https://doi.org/10.1111/1755⁃6724.14333
      He, W.G., Zhou, J.X., 2018. Analogue Modeling of Feature and Formation Mechanism of Horsetail⁃Shaped Fold Belt in Southeast Sichuan Basin, South China. Earth Science, 43(6): 2133-2148 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806026.htm
      Hu, Z.Q., Zhu, G., Liu, G.S., et al., 2009. The Folding Time of the Eastern Sichuan Jura⁃Type Fold Belt: Evidence from Unconformity. Geological Review, 55(1) : 32-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200901006.htm
      Huang, G.M., Wang, Y.J., Zhao, Y.G., et al., 2016. Numerical Simulation of Structural Styles and Evolution of the Daba Shan Foreland Thrust Belt. Acta Geologica Sinica, 90(4): 653-668 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201604005&dbcode=CJFD&year=2016&dflag=pdfdown
      Jia, D., Wei, G.Q., Chen, Z.X., et al., 2006. Longmen Shan Fold⁃Thrust Belt and Its Relation to the Western Sichuan Basin in Central China: New Insights from Hydrocarbon Exploration. AAPG Bulletin, 90(9): 1425-1447. https://doi.org/10.1306/03230605076
      Jin, W.Z., Tang, L.J., Yang, K.M., et al., 2010. Segmentation of the Longmen Mountains Thrust Belt, Western Sichuan Foreland Basin, SW China. Tectonophysics, 485(1/2/3/4): 107-121. https://doi.org/10.1016/j.tecto.2009.12.007
      Li, D.L., 1994. Simulation of Tectonic Stress Field and Crack of Yangxin Carbonate Rocks in Weiyuan Area, Sichuan Basin. Petroleum Exploration and Development, 21(3): 33-45 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK403.004.htm
      Li, R., Hu, M.Y., Pan, R.F., et al., 2019. Development Characteristics and Forming Mechanism of Middle Permian Fault⁃Karst Carbonate Reservoirs in the Central Sichuan Basin. China Petroleum Exploration, 24(1): 105-114 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KTSY201901012.htm
      Li, Y.Y., Qi, J.F., Zhou, S., 2017. Differential Deformation and Its Main Controls on Strike⁃Slip Structures: Evidence from Sandbox. Petroleum Geology & Experiment, 39(5): 711-715 (in Chinese with English abstract).
      Li, Y., Zhou, R.J., Densmore, A.L., et al., 2007. Geomorphic and Sedimentary Evidence for Reversion of Strike⁃Slip Direction in Longmen Shan Fault Zone. Journal of Mineral Petroleum, 26(4): 26-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200604004.htm
      Li, Z.W., 2006. Meso⁃Cenozoic Evolution of Dabashan Foreland Basin⁃Thrust Belt, Cetral China (Dissertation). Chengdu University of Technology, Chengdu (in Chinese).
      Liu, H.F., Liang, H.S., Cai, L.G., et al., 1994. Structural Styles of the Longmenshan Thrust Belt and Evolution of the Foreland Basin in Western Sichuan Province, China. Acta Geologica Sinica, 68(2): 101-118 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXW199404000.htm
      Ma, D.B., Wang, Z.C., Duan, S.F., et al., 2018. Structural Characteristics and Its Significance for Hydrocarbon Accumulation of Strike⁃Slip Fault in Gaoshiti⁃Moxi Area, Central Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 795-805 (in Chinese with English abstract).
      Panien, M., Schreurs, G., Pfiffner, A., 2006. Mechanical Behaviour of Granular Materials Used in Analogue Modelling: Insights from Grain Characterization, Ring⁃Shear Tests and Analogue Experiments. Journal of Structural Geology, 28(9): 1710-1724. https://doi.org/10.1016/j.jsg.2006.05.004
      Pei, Y.W., Paton, D.A., Knipe, R. J., et al., 2015. A Review of Fault Sealing Behavior and Its Evaluation in Siliciclastic Rocks. EarthScience Reviews, 150(3): 121-138. https://doi.org/10.1016/j.earscirev.2015.07.011
      Pei, Y.W., Paton, D.A., Knipe, R. J., et al., 2018. Unraveling the Influence of Throw and Stratigraphy in Controlling Subseismic Fault Architecture of Fold⁃Thrust Belts: An Example from the Qaidam Basin, Northeast Tibetan Plateau. AAPG Bulletin, 102(6): 1091-1117. https://doi.org/10.1306/08101716503
      Pei, Y.W., Knipe, R. J., Paton, D. A., et al., 2020. Field⁃Based Investigation of Fault Architecture: A Case Study from the Lenghu Fold⁃and⁃Thrust Belt, Qaidam Basin, NE Tibetan Plateau. GSA Bulletin, 132(1/2): 389-408. https://doi.org/10.1130/b35140.1
      Qi, L., Han, T.H., 1992. Influence of Evolution of the Crustal Stress Field on Migration and Accumulation of Oil and Gas in the Sichuan Basin during the Himalayan Movement. Acta Geologica Sichuan, 3: 232-239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SCDB199203007.htm
      Qiu, H.B., Deng, S., Cao, Z.C., et al., 2019. The Evolution of the Complex Anticlinal Belt with Crosscutting Strike⁃Slip Faults in the Central Tarim Basin, NW China. Tectonics, 38(6): 2087-2113. https://doi.org/10.1029/2018tc005229
      Schellart, W. P., 2000. Shear Test Results for Cohesion and Friction Coefficients for Different Granular Materials: Scaling Implications for Their Usage in Analogue Modeling. Tectonophysics, 324(1/2): 1-16. https://doi.org/10.1016/s0040⁃1951(0)00111⁃6
      Shi, H.Y., Ma, N.J., Ma, J., 2018. Numerical Simulation for the Formation Process of the Longmenshan Fault Zone and Its Crustal Stress. Chinese Journal of Geophysics, 61(5): 1817-1823 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201805012.htm
      Su, N., Zou, L.J., Shen, X.H., et al., 2014a. Identification of Fracture Development Period and Stress Field Analysis Based on Fracture Fabrics in Tectonic Superposition Areas. Arabian Journal of Geosciences, 7(10): 3983-3994. https://doi.org/10.1007/s12517⁃013⁃1063⁃6
      Su, N., Zou, L.J., Shen, X.H., et al., 2014b. Fracture Patterns in Successive Folding in the Western Sichuan Basin, China. Journal of Asian EarthS cience, 81(3): 65-76. https://doi.org/10.1016/j.jseaes.2013.12.003
      Sun, C., 2017. Physical Modeling of the Longmen Shan Fold and Thrust Belt (Dissertation). Nanjing University, Nanjing(in Chinese).
      Wang, E., Meng, K., Su, Z., et al., 2014. Block Rotation: Tectonic Response of the Sichuan Basin to the Southeastward Growth of the Tibetan Plateau along the Xianshuihe⁃Xiaojiang Fault. Tectonics, 33(5): 686-718. https://doi.org/10.1002/2013tc003337
      Wang, X.G., 2016. Analysis of the Late Quaternary Activity along the Maowen⁃Wenchuan Fault: Middle Part of the Back⁃Range Fault at the Longmenshan Fault Zone (Dissertation). Institute of Geology, China Earthquake Administration, Beijing(in Chinese).
      Wang, Z.C., Zhao, W.Z., Xu, A.N., et al., 2006. Structure Styles and Their Deformation Mechanisms of Dabashan Foreland Thrust Belt in the North of Sichuan Basin. Geoscience, 3: 429-435 (in Chinese with English abstract). http://www.researchgate.net/publication/281468587_Structure_styles_and_their_deformation_mechanisms_of_Dabashan_foreland_thrust_belt_in_the_north_of_Sichuan_basin
      Wei, G.Q., Jia, D., Yang, W., et al., 2019. Tectonic Characteristics and Petroleum of the Sichuan Basin. Science Press, Beijing (in Chinese).
      Xiao, A.C., Wei, G.Q., Shen, Z.Y., et al., 2011. Basin⁃Mountain System and Tectonic Coupling between Yangtze Block and South Qinling Orogeny. Acta Petrologica Sinica, 27(3): 601-611 (in Chinese with English abstract). http://www.oalib.com/paper/1473666
      Xie, L.J., Pei, Y.W., Li, A.R., et al., 2018. Implications of Meso⁃ to Micro⁃Scale Deformation for Fault Sealing Capacity: Insights from the Lenghu5 Fold⁃and⁃Thrust Belt, Qaidam Basin, NE Tibetan Plateau. Journal of Asian Earth Sciences, 158: 336-351. https://doi.org/10.1016/j.jseaes.2018.03.004
      Xu, H.L., Wei, G.Q., Jia, C.Z., et al., 2012. Tectonic Evolution of the Leshan⁃Longnüsi Paleo⁃Uplift and Its Control on Gas Accumulation in the Sinian Strata, Sichuan Basin. Petroleum Exploration and Development, 39(4): 406-416(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600603
      Xu, Z.Q., Lu, Y.L., Tang, Y.Q., et al., 1986. Deformation Characteristics and Tectonic Evolution of the Eastern Qinling Orogenic Belt. Acta Geologica Sinica, 60(3): 237-47 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXW198603002.htm
      Yin, J.F., Gu, Z.D., Li, Q.F., 2013. Characteristics of Deep⁃Rooted Faults and Their Geological Significances in Dachuanzhong Area, Sichuan Basin. Oil & Gas Geology, 34(3): 376-382 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201303019.htm
      Yu, Y., Li, Z.Q., Yang, Y.Y., et al., 2013. Characteristics of Tectonic Evolution of Weiyuan Area in Sichuan Basin andIts Effect on Lower Paleozoic Oil and Gas Reservoirs. Natural Gas Exploration & Development, 36(2): 1-4(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRKT201302002.htm
      陈竹新, 贾东, 张惬, 等, 2005. 龙门山前陆褶皱冲断带的平衡剖面分析. 地质学报, 79(1): 38-45. doi: 10.3321/j.issn:0001-5717.2005.01.005
      邓尚, 李慧莉, 张仲培, 等, 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
      何文刚, 周建勋, 2018. 川东南马尾状褶皱带特征与形成机制的物理模拟. 地球科学, 43(6): 2133-2148. doi: 10.3799/dqkx.2017.619
      胡召齐, 朱光, 刘国生, 等, 2009. 川东"侏罗山式"褶皱带形成时代: 不整合面的证据. 地质评论, 55(1: )32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200901006.htm
      黄光明, 王岳军, 赵勇刚, 等, 2016. 大巴山前陆冲断带构造样式和演化过程的数值模拟. 地质学报, 90(4): 653-668. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201604005.htm
      黎荣, 胡明毅, 潘仁芳, 等, 2019. 川中地区中二叠统断溶体发育特征及形成机制. 中国石油勘探, 24(1): 105-114. doi: 10.3969/j.issn.1672-7703.2019.01.011
      李定龙, 1994. 四川威远地区构造应力场模拟及阳新统裂缝分析. 石油勘探与开发, 21(3): 33-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK403.004.htm
      李艳友, 漆家福, 周赏, 2017. 走滑构造差异变形特征及其主控因素分析——基于砂箱模拟实验. 石油实验地质, 39(5): 711-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201705019.htm
      李勇, 周荣军, Densmore, A. L., 等, 2007. 龙门山断裂带走滑方向的反转及其沉积与地貌标志. 矿物岩石, 26(4): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200604004.htm
      李智武, 2009. 中-新生代大巴山前陆盆地-冲断带的形成演化(博士学位论文). 成都: 成都理工大学.
      刘和甫, 梁慧社, 蔡立国, 等, 1994. 川西龙门山冲断系构造样式与前陆盆地演化. 地质学报, 68(2): 101-118. doi: 10.3321/j.issn:0001-5717.1994.02.001
      马德波, 汪泽成, 段书府, 等, 2018. 四川盆地高石梯-磨溪地区走滑断层构造特征与天然气成藏意义. 石油勘探与开发, 45(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805006.htm
      祁林, 韩永辉, 1992. 四川盆地喜马拉雅期地应力场演化对油气运移聚集影响. 四川地质学报, 3: 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB199203007.htm
      师皓宇, 马念杰, 马骥, 2018. 龙门山断裂带形成过程及其地应力状态模拟. 地球物理学报, 61(5): 1817-1823. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805012.htm
      孙闯, 2017. 龙门山褶皱冲断带构造物理模拟研究(博士学位论文). 南京: 南京大学.
      汪泽成, 赵文智, 徐安娜, 等, 2006. 四川盆地北部大巴山山前带构造样式与变形机制. 现代地质, 3: 429-435. doi: 10.3969/j.issn.1000-8527.2006.03.010
      王旭光, 2016. 龙门山断裂带后山断裂中段茂汶-汶川断裂晚第四纪活动性分析(硕士学位论文). 北京: 中国地震局地质研究所.
      魏国齐, 贾东, 杨威, 等, 2019. 四川盆地构造特征与油气. 北京: 科学出版社.
      肖安成, 魏国齐, 沈中延, 等, 2011. 扬子地块与南秦岭造山带的盆山系统与构造耦合. 岩石学报, 27(3): 601-611. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103002.htm
      许海龙, 魏国齐, 贾承造, 等, 2012. 乐山-龙女寺古隆起构造演化及对震旦系成藏的控制. 石油勘探与开发, 39(4): 406-416. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201204004.htm
      许志琴, 卢一伦, 汤耀庆, 等, 1986. 东秦岭造山带的变形特征及构造演化. 地质学报, 60(3): 237-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198603002.htm
      殷积峰, 谷志东, 李秋芬, 2013. 四川盆地大川中地区深层断裂发育特征及其地质意义. 石油与天然气地质, 34(3): 376-382. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303019.htm
      喻颐, 李忠权, 杨渊宇, 等, 2013. 四川盆地威远地区构造演化特征及其对下古生界油气富集的控制作用. 天然气勘探与开发, 36(2): 1-4. doi: 10.3969/j.issn.1673-3177.2013.02.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (2096) PDF downloads(185) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return