• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 46 Issue 7
    Jul.  2021
    Turn off MathJax
    Article Contents
    Mao Xin, Liu Linjing, Song Lei, Jiang Gaolei, Li Junfeng, Li Chang'an, 2021. A 70 Year Sedimentary Record of Eco-Environment Changes in Baiyangdian Lake and Its Influencing Factors. Earth Science, 46(7): 2609-2620. doi: 10.3799/dqkx.2020.203
    Citation: Mao Xin, Liu Linjing, Song Lei, Jiang Gaolei, Li Junfeng, Li Chang'an, 2021. A 70 Year Sedimentary Record of Eco-Environment Changes in Baiyangdian Lake and Its Influencing Factors. Earth Science, 46(7): 2609-2620. doi: 10.3799/dqkx.2020.203

    A 70 Year Sedimentary Record of Eco-Environment Changes in Baiyangdian Lake and Its Influencing Factors

    doi: 10.3799/dqkx.2020.203
    • Received Date: 2020-07-11
    • Publish Date: 2021-07-15
    • Based on sedimentary proxies (i.e., 210Pb and 137Cs dating, heavy metal nutrient and elements, particle size and diatom dominant species) from sediment core in the northern part of Baiyangdian Lake and documentary date (i.e., hydrology, climate, economic and society statistic from Baoding city and Anxin county), this study reconstructed the eco-environment changes of Baiyangdian Lake during the past 70 years and discussed the main driving factors affecting the succession of dominant diatom species.The results showed heavy metals and nutrients were of lower levels, and the diatom was dominated by Aulacoseira granulate before 1960, which indicated that the lake ecology was in the stage of natural evolution.Around 1960, influenced by hydrological control upstream, TP and TN content in Baiyangdian Lake started to increase slowly, and the indicator species of eutrophication, Cyclotella meneghiniana, increased significantly.Between 1960 and 1990, TP and TN content rose significantly, indicating more nutrient input in the rapid process of agriculturalization, however, the content of heavy metals still remained at a lower level. The diatom assemblages were characterized by the codominance of A. granulate and C. meneghiniana. After 1990, accelerated industrial and agricultural activitiesenriched heavy metals and nutrients, especially after 2000, such enrichment became even more significant.At which point diatom assemblages went through material changes: the dominant species shifted from A. granulate before 1990 to C. meneghiniana after 1990; the heavy metal-tolerant species Nitzschia palea hasbeen on the rise since 2000. According to the redundancy analysis, heavy metals, TP, TN, temperature, wind speed, hydrological conditions were significant factors influencing the succession of three diatom dominant speciesover the past 70 years in Baiyangdian. Heavy metals and nutrients were most important factors on diatom succession. Meanwhile, hydrological conditions, temperature and wind speed also imposed on diatom succession.

       

    • loading
    • Anderson, N. J., 2000. Diatoms, Temperature and Climatic Change. European Journal of Phycology, 35(4): 307-314. https://doi.org/10.1017/s0967026200002857
      Battarbee, R. W., Jones, V. J., Flower, R. J., et al., 2002. Diatoms. In: Smol, J. P., Birks, H. J. B., Last, W. M., eds., Tracking Environmental Change Using Lake Sediments. Volume 3. Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publisher, Dordrecht, 155-202.
      Bennion, H., Battarbee, R. W., Sayer, C. D., et al., 2011. Defining Reference Conditions and Restoration Targets for Lake Ecosystems Using Palaeolimnology: A Synthesis. Journal of Paleolimnology, 45(4): 533-544. https://doi.org/10.1007/s10933-010-9419-3
      Chen, X., Yang, X. D., Dong, X. H., et al., 2013a. Environmental Changes in Chaohu Lake (Southeast, China) since the Mid 20th Century: The Interactive Impacts of Nutrients, Hydrology and Climate. Limnologica, 43(1): 10-17. https://doi.org/10.1016/j.limno.2012.03.002
      Chen, X., Mao, X., Cao, Y. M., et al., 2013b. Use of Siliceous Algae as Biological Monitors of Heavy Metal Pollution in Three Lakes in a Mining City, Southeast China. Oceanological and Hydrobiological Studies, 42(3): 1-25. https://doi.org/10.2478/s13545-013-0079-6
      Chen, X., McGowan, S., Xu, L., et al., 2016. Effects of Hydrological Regulation and Anthropogenic Pollutants on Dongting Lake in the Yangtze Floodplain. Ecohydrology, 9(2): 315-325. https://doi.org/10.1002/eco.1637
      Cui, X. L., 1995. Investigation of Eutrophication Pollution Sources in Baiyangdian Lake. Environmental Ecology, 16(Suppl.): 17-18+27 (in Chinese).
      Dong, X. H., Yang, X. D., Chen, X., et al., 2016. Using Sedimentary Diatoms to Identify Reference Conditions and Historical Variability in Shallow Lake Ecosystems in the Yangtze Floodplain. Marine and Freshwater Research, 67(6): 803. https://doi.org/10.1071/mf14262
      Gell, P., Tibby, J., Fluin, J., et al., 2005. Accessing Limnological Change and Variability Using Fossil Diatom Assemblages, South-East Australia. River Research and Applications, 21(2/3): 257-269. https://doi.org/10.1002/rra.845
      Hakanson, L., 1980. An Ecological Risk Index for Aquatic Pollution Control: A Sedimentological Approach. Water Research, 14(8): 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8
      Hu, G. C., Xu, M. Q., Xu, Z. C., et al., 2011. Pollution Characteristic and Potential Risk Assessment of Heavy Metals in Surface Sediment from Fuhe River and Baiyangdian Lake, North China. Journal of Agro-Environment Science, 30(1): 146-153(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH201101025.htm
      Jekel, H., 2005. Sustainable Water Management in Europe: The Water Framework Directive. In: Vogtmann, H., Dobretsov, N., eds. Transboundary Water Resources: Strategies for Regional Security and Ecological Stability. Springer, Netherlands, 121-127.
      Jiang, X., Jin, X. C., Yao, Y., et al., 2008. Effects of Biological Activity, Light, Temperature and Oxygen on Phosphorus Release Processes at the Sediment and Water Interface of Taihu Lake, China. Water Research, 42(8/9): 2251-2259. https://doi.org/10.1016/j.watres.2007.12.003
      Krammer, K., Lange-Bertalot, H., 1986. Bacillariophyceae (1-4 Teil). In: Ettl, H., Gerloff, J., Heynig, H., eds., Süßwasserflora von Mitteleuropa, Vol. 2. Stuttgart/Jena, Gustav Fischer Verlag, 1-4.
      Li, Y. M., Zhao, Q., Feng, G. P., 2010. The Diatom Assemblages and Their Response to Different Environments of Baiyangdian Lake, China. Acta Ecological Sinica, 30(17): 4559-4570(in Chinese with English abstract). http://www.researchgate.net/publication/286728954_The_diatom_assemblages_and_their_response_to_different_environments_of_Baiyangdian_Lake_China
      Li, Z. Q., Liu, J. Z., Wang, W. X., 2002. Analysis of the Causes of Baiyangdian Sediment Accumulation. Hebei Water Resources and Hydropower Technology, (2): 31-32 (in Chinese with English abstract).
      Liu, E. F., Shen, J., Liu, X. Q., et al., 2005. Variation Characteristics and Pollution History of Heavy Metals and Nutrients in Sediments of Taihu Lake. Science in China (Series D: Earth Science), 35(Suppl. II): 73-80(in Chinese with English abstract).
      Liu, S. C., Wang, H. H., Tian, K., et al., 2020. Ecological Environmental Changes and Influencing Analysis in Baiyangdian Lake. Journal of Agro-Environment Science, 39(5): 1060-1069(in Chinese with English abstract).
      Liu, X., Shi, B., Meng, J., et al., 2019. Spatio-Temporal Variation Characteristics of Water Eutrophication and Sediment Pollution in Baiyangdian Lake. Environmental Science, 41(5): 2127-2136 (in Chinese with English abstract).
      Munendra, S., German, M., Singh, I. B., 2003. Geogenic Distribution and Baseline Concentration of Heavy Metals in Sediments of the Ganges River, India. Journal of Geochemical Exploration, 80(1): 1-17. doi: 10.1016/S0375-6742(03)00016-5
      Nogueira, M. G., 2000. Phytoplankton Composition, Dominance and Abundance as Indicators of Environmental Compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil. Hydrobiologia, 431: 115-128. doi: 10.1023/A:1003769408757
      Qin, Y. M., Gong, J., Gu, Y. S., et al., 2018. Ecological Monitoring and Environmental Significance of Testate Amoebae in Subalpine Peatlands in West Hubei Province, China. Earth Science, 43(11): 4036-4045(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201811021.htm
      Ritchie, J. C., McHenry, J. R., 1990. Application of Radioactive Fallout Cesium-137 for Measuring Soil Erosion and Sediment Accumulation Rates and Patterns: A Review. Journal of Environmental Quality, 19(2): 215-233. https://doi.org/10.2134/jeq1990.00472425001900020006x
      Smol, J. P., 2010. The Power of the Past: Using Sediments to Track the Effects of Multiple Stressors on Lake Ecosystems. Freshwater Biology, 55(Suppl.1): 43-59. https://doi.org/10.1111/j.1365-2427.2009.02373.x
      Song, Z. H., 2005. Analysis of Hydrological Characteristics in Baiyangdian Basin. Hebei Water Resources, 9: 10-11 (in Chinese).
      Stager, J. C., Hecky, R. E., Grzesik, D., et al., 2009. Diatom Evidence for the Timing and Causes of Eutrophication in Lake Victoria, East Africa. Hydrobiologia, 636(1): 463-478. https://doi.org/10.1007/s10750-009-9974-7
      Tockner, K., Stanford, J. A., 2002. Riverine Flood Plains: Present State and Future Trends. Environmental Conservation, 29(3): 308-330. https://doi.org/10.1017/s037689290200022x
      Wang, J., Gao, G., Pei, Y. S., et al., 2010. Sources and Transformations of Nitrogen in the Fuhe River of the Baiyangdian Lake. Environmental Science, 31(12): 2905-2910(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/21360878
      Yang, C. X., 2010. Analysis on the Deposited Quantity Variation and Its Influenced Factors in Bayangdian. Ground Water, 32(2): 110-112(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXSU201002045.htm
      Yang, W., Tian, Y. Y., Zhang, Z. H., et al., 2019. Evolution of Phytoplankton Community and Biotic Integrity in Baiyangdian Lake in Recent 60 Years. Environmental Ecology, 8(1): 1-9 (in Chinese with English abstract).
      Yang, X. D., Anderson, N. J., Dong, X. H., et al., 2008. Surface Sediment Diatom Assemblages and Epilimnetic Total Phosphorus in Large, Shallow Lakes of the Yangtze Floodplain: Their Relationships and Implications for Assessing Long-Term Eutrophication. Freshwater Biology, 53(7): 1273-1290. https://doi.org/10.1111/j.1365-2427.2007.01921.x
      Yang, Y., Yin, X. N., Yang, Z. F., et al., 2018. Detection of Regime Shifts in a Shallow Lake Ecosystem Based on Multi-Proxy Paleolimnological Indicators. Ecological Indicators, 92(7): 312-321. https://doi.org/10.1016/j.ecolind.2017.05.059
      Yu, S. C., Yu, D. Q., Wang, L. C., et al., 2019. Remote Sensing Study of Dongting Lake Bearch Changes before and after Operation of Three Gorges Reservoir. Earth Science, 44(12): 4275-4283(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912037.htm
      Yuan, Y., Yan, D. H., Wang, H., et al., 2013. Attributive Analysis on Evolution of Inflow to Baiyangdian Wetland. Water Resources and Hydropower Engineering, 44(12): 1-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJWJ201312001.htm
      Zeng, L. H., Ning, D. L., Xu, L., et al., 2015. Sedimentary Evidence of Environmental Degradation in Sanliqi Lake, Daye City (A Typical Mining City, Central China). Bulletin of Environmental Contamination and Toxicology, 95(3): 317-324. https://doi.org/10.1007/s00128-015-1606-5
      Zhang, S. Z., Tian, J. W., Li, G. B., 2007. Ecological Problems and Restoration Measures of Baiyangdian Wetland. Bulletin of Soil and Water Conservation, 27(3): 146-150(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STTB200703032.htm
      Zhang, T., Liu, J. L., Wang, X. M., 2010. Causal Analysis of the Apatial-Temporal Variation of Water Quality in Baiyangdian Lake. Acta Scientiae Circumstantiae, 30(2): 281-267 (in Chinese with English abstract). http://www.oalib.com/paper/1592464
      Zhao, X. F., Zhang, X. R., 2019. Study on Policy Tool Selection in Water Pollution Control in Xiong'an New Area-Based on the Policy Text of Baiyangdian Basin (1984-2018). Journal of the Party School of the CPC Ningbo Municipal Committee, 41(5): 103-111 (in Chinese).
      Zhu, J. F., Zhou, Y., Wang, S. X., et al., 2019. Analysis of Changes of Baiyangdian Wetland from 1975 to 2018 Based on Remote Sensing. Journal of Remote Sensing, 23(5): 971-986 (in Chinese with English abstract).
      崔秀丽, 1995. 白洋淀水体富营养化污染源调查. 环境科学, 16(增刊): 17-18+27. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ5S1.006.htm
      胡国成, 许木启, 许振成, 等, 2011. 府河-白洋淀沉积物中重金属污染特征及潜在风险评价. 农业环境科学学报, 30(1): 146-153. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201101025.htm
      李亚蒙, 赵琦, 冯广平, 等, 2010. 白洋淀硅藻分布及其与水环境的关系. 生态学报, 30(17): 4559-4570. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201017005.htm
      李振卿, 刘建芝, 王卫喜, 2002. 白洋淀泥沙淤积成因分析. 河北水利水电技术, (2): 31-32. doi: 10.3969/j.issn.1672-9900.2002.02.030
      刘恩峰, 沈吉, 刘兴起, 等, 2005. 太湖沉积物重金属和营养盐变化特征及污染历史. 中国科学(D辑: 地球科学), 35(增刊II): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2005S2008.htm
      刘世存, 王欢欢, 田凯, 等, 2020. 白洋淀生态环境变化及影响因素分析. 农业环境科学学报, 39(5): 1060-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202005016.htm
      刘鑫, 史斌, 孟晶, 等, 2019. 白洋淀水体富营养化和沉积物污染时空变化特征. 环境科学, 41(5): 2127-2136. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202005016.htm
      秦养民, 巩静, 顾延生, 等, 2018. 鄂西亚高山泥炭地有壳变形虫生态监测及对水位的指示意义. 地球科学, 43(11): 4036-4045. doi: 10.3799/dqkx.2018.599
      宋中海, 2005. 白洋淀流域水文特性分析. 河北水利, 9: 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLS200509008.htm
      王珺, 高高, 裴元生, 等, 2010. 白洋淀府河中氮的来源与迁移转化研究. 环境科学, 31(12): 2905-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201012015.htm
      杨春霄, 2010. 白洋淀入淀水量变化及影响因素分析. 地下水, 32(2): 110-112. doi: 10.3969/j.issn.1004-1184.2010.02.044
      杨薇, 田艺苑, 张兆衡, 等, 2019. 近60年来白洋淀浮游植物群落演变及生物完整性评价. 环境生态学, 8(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSX201908002.htm
      余姝辰, 余德清, 王伦澈, 等, 2019. 三峡水库运行前后洞庭湖州滩面积变化遥感认识. 地球科学, 44(12): 4275-4283. doi: 10.3799/dqkx.2019.182
      袁勇, 严登华, 王浩, 等, 2013. 白洋淀湿地入淀水量演变归因分析. 水利水电技术, 44(12): 1-23. doi: 10.3969/j.issn.1000-0860.2013.12.001
      张素珍, 田建文, 李贵宝, 2007. 白洋淀湿地面临的生态问题及生态恢复措施. 水土保持通报, 27(3): 146-150. doi: 10.3969/j.issn.1000-288X.2007.03.032
      张婷, 刘静玲, 王雪梅, 2010. 白洋淀水质时空变化及影响因子评价与分析. 环境科学学报, 30(2): 281-267. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201002006.htm
      赵新峰, 张欣蕊, 2019. 雄安新区水污染治理中的政策工具选择研究——基于白洋淀流域政策文本(1984~2018). 中共宁波市委党校学报, 41(5): 103-111. doi: 10.3969/j.issn.1008-4479.2019.05.015
      朱金峰, 周艺, 王世新, 等, 2019. 1975年~2018年白洋淀湿地变化分析. 遥感学报, 23(5): 971-986. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201905017.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (1562) PDF downloads(85) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return