Citation: | Jiang Xingfu, Peng Songbai, Han Qingsen, 2021. Petrogenesis and Geological Significance of ca. 860 Ma Dikes in Southern Huangling Anticline, Yangtze Craton. Earth Science, 46(6): 2117-2132. doi: 10.3799/dqkx.2020.210 |
Agrawal, S., Guevara, M., Verma, S.P., 2008. Tectonic Discrimination of Basic and Ultrabasic Volcanic Rocks through Log-Transformed Ratios of Immobile Trace Elements. International Geology Review, 50(12): 1057-1079. https://doi.org/10.2747/0020-6814.50.12.1057
|
Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042
|
Chen, K., Gao, S., Wu, Y.B., et al., 2013.2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224: 472-490. https://doi.org/10.1016/j.precamres.2012.10.017
|
Deng, H., Peng, S.B., Polat, A., et al., 2017. Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for Evolving Tectonic Settings. Precambrian Research, 289: 75-94. https://doi.org/10.1016/j.precamres.2016.12.003
|
Eklund, O., Konopelko, D., Rutanen, H., et al., 1998.1.8 Ga Svecofennian Post-Collisional Shoshonitic Magmatism in the Fennoscandian Shield. Lithos, 45(1-4): 87-108. https://doi.org/10.1016/s0024-4937(98)00027-9. doi: 10.1016/S0024-4937(98)00027-9
|
Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153-182. https://doi.org/10.2475/02.2011.03
|
Gao, S., Zhang, B.R., 1990. The Discovery of Archean TTG Gneisses in the Northern Yangtze Platform and Their Implications. Earth Science, 15(6): 675-679 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199006012.htm
|
Guo, J.L., Gao, S., Wu, Y.B., et al., 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82-95. https://doi.org/10.1016/j.precamres.2013.12.018
|
Guo, J.L., Wu, Y.B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007
|
Han, B.F., 2007. Diverse Post-Collisional Granitoids and Their Tectonic Setting Discrimination. Earth Science Frontiers, 14(3): 64-72 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200703007.htm
|
Han, Q.S., Peng, S.B., 2020. Paleoproterozoic Subduction within the Yangtze Craton: Constraints from Nb-Enriched Mafic Dikes in the Kongling Complex. Precambrian Research, 340: 105634. https://doi.org/10.1016/j.precamres.2020.105634
|
Han, Q.S., Peng, S.B., Kusky, T.M., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China: Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293: 13-38. https://doi.org/10.1016/j.precamres.2017.03.004
|
Han, Q.S., Peng, S.B., Polat, A., et al., 2018. A ca. 2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China: Evidence from High-Mg Basalts and Andesites. Precambrian Research, 309: 309-324. https://doi.org/10.1016/j.precamres.2017.05.015
|
Hu, S.H., Chen, A.F., Lin, S.L., et al., 2000. ICP-MS Analytical Research into 40 Trace and Ultra-Trace Elements in Geological Samples. Earth Science, 25(2): 186-190 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200002014.htm
|
Jiang, X.F., Peng, S.B., Kusky, T.M., et al., 2018. Petrogenesis and Geotectonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton: Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1): 93-102. https://doi.org/10.1007/s12583-018-0821-5
|
Jiang, X.F., Peng, S.B., Polat, A., et al., 2016. Geochemistry and Geochronology of Mylonitic Metasedimentary Rocks Associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze Craton, China: Implications for Geodynamic Events. Precambrian Research, 279: 37-56. https://doi.org/10.1016/j.precamres.2016.04.004
|
Le Maitre, R.W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell Scientific Publications, Oxford.
|
Li, L.M., Lin, S.F., Davis, D.W., et al., 2014. Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane: Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block. Precambrian Research, 255: 30-47. doi: 10.1016/j.precamres.2014.09.009
|
Li, X.H., Li, Z.X., Ge, W.C., et al., 2003a. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma? Precambrian Research, 122(1-4): 45-83. https://doi.org/10.1016/s0301-9268(02)00207-3. doi: 10.1016/S0301-9268(02)00207-3
|
Li, X.Y., Guo, F., Wang, Y.J., 2002. Post-Orogenic Tectono-Magmatism and Its Implications for Evolution of Orogenic Belts. Geological Journal of China Universities, 8(1): 68-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200201007.htm
|
Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003b. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume That Broke up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5 doi: 10.1016/S0301-9268(02)00208-5
|
Lin, G.C., Li, X.H., Li, W.X., 2006. SHRIMP U-Pb Zircon Age, Geochemistry and Nd-Hf Isotope of Neoproterozoic Mafic Dyke Swarms in Western Sichuan: Petrogenesis and Tectonic Significance. Science in China: Earth Sciences, 36(7): 630-645(in Chinese).
|
Ling, W.L., Gao, S., Cheng, J.P., et al., 2006. Neoproterozoic Magmatic Events within the Yangtze Continental Interior and along Its Northern Margin and Their Tectonic Implication: Constraint from the ELA-ICPMS U-Pb Geochronology of Zircons from the Huangling and Hannan Complexes. Acta Petrologica Sinica, 22(2): 387-396 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200602011.htm
|
Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
|
Ludwig, K.R., 2003. User's Manual for Isoplot/EX Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center. Berkeley Geochronological Center Special Publication, Berkeley.
|
Ma, D.Q., Du, S.H., Xiao, Z.F., 2002. The Origin of Huangling Granite Batholith. Acta Petrologica et Mineralogica, 21(2): 151-161 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200202008.htm
|
Ma, D.Q., Li, Z.C., Xiao, Z.F., 1997. A Study on the Boundary Age between Jurassic and Cretaceous. Acta Geoscientia Sinica, 18(3): 233-241 (in Chinese with English abstract). http://www.researchgate.net/publication/284611395_A_Study_on_the_Boundary_Age_between_the_Jurassic_and_the_Cretaceous
|
Peng, M., Wu, Y.B., Gao, S., et al., 2012a. Geochemistry, Zircon U-Pb Age and Hf Isotope Compositions of Paleoproterozoic Aluminous A-Type Granites from the Kongling Terrain, Yangtze Block: Constraints on Petrogenesis and Geologic Implications. Gondwana Research, 22(1): 140-151. https://doi.org/10.1016/j.gr.2011.08.012
|
Peng, S.B., Kusky, T.M., Jiang, X.F., et al., 2012b. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2-3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010
|
Ren, G.M., Pang, W.H., Sun, Z.M., et al., 2013. Zircon U-Pb Geochronology and Geochemistry of Mafic Dyke Swarms in Dengxiangying Group on West Margin of Yangtze Block, China. Journal of Chengdu University of Technology (Science & Technology Edition), 40(1): 66-79 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG201301011.htm
|
Speer, J.A., 1982. Zircon. In: Ribbe, P.H., ed., Reviews in Mineralogy. Mineral Society American, Washington, D.C., 67-112.
|
Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
|
Wang, X.L., Zhao, G.C., Zhou, J.C., et al., 2008a. Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China: Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen. Gondwana Research, 14(3): 355-367. https://doi.org/10.1016/j.gr.2008.03.001
|
Wang, X.C., Li, X.H., Li, W.X., et al., 2008b. The Bikou Basalts in the Northwestern Yangtze Block, South China: Remnants of 820-810 Ma Continental Flood Basalts? Geological Society of America Bulletin, 120(11-12): 1478-1492. https://doi.org/10.1130/b26310.1 doi: 10.1130/B26310.1
|
Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2006. Petrogenesis of the Neoproterozoic Strongly Peraluminons Granitoids from Northern Guangxi: Constraints from Zircon Geochronology and Hf Isotopes. Acta Petrologica Sinica, 22(2): 326-342 (in Chinese with English abstract).
|
Weaver, B.L., Wood, D.A., Tarney, J., et al., 1986. Role of Subducted Sediment in the Genesis of Ocean-Island Basalts: Geochemical Evidence from South Atlantic Ocean Islands. Geology, 14(4): 275-278. doi: 10.1130/0091-7613(1986)14<275:ROSSIT>2.0.CO;2
|
Wei, Y.X., Peng, S.B., Jiang, X.F., et al., 2012. SHRIMP Zircon U-Pb Ages and Geochemical Characteristics of the Neoproterozoic Granitoids in the Huangling Anticline and Its Tectonic Setting. Journal of Earth Science, 23(5): 659-675. https://doi.org/10.1007/s12583-012-0284-z
|
Wu, H., 2017. Recognition of~865 Ma and~815 Ma Mantle Magmatism and Its Implication for the Neoproterozoic Tectonic Evolution of the South China Block (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Wu, H., Zhang, Y.H., Ling, W.L., et al., 2016. Recognition of Mantle Input and Its Tectonic Implication for the Nature of ~815 Ma Magmatism in the Yangtze Continental Interior, South China. Precambrian Research, 279: 17-36. https://doi.org/10.1016/j.precamres.2016.04.005
|
Wu, P., Zhang, S.B., Zheng, Y.F., et al., 2019. Amalgamation of South China into Rodinia during the Grenvillian Accretionary Orogeny: Geochemical Evidence from Early Neoproterozoic Igneous Rocks in the Northern Margin of the South China Block. Precambrian Research, 321: 221-243. https://doi.org/10.1016/j.precamres.2018.12.015
|
Wu, Y.B., Gao, S., Gong, H.J., et al., 2009. Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton: Refining the Timing of Palaeoproterozoic High-Grade Metamorphism. Journal of Metamorphic Geology, 27(6): 461-477. https://doi.org/10.1111/j.1525-1314.2009.00826.x
|
Wu, Y.B., Gao, S., Zhang, H.F., et al., 2012. Geochemistry and zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambr. Res., 200-203: 26-37. doi: 10.1016/j.precamres.2011.12.015
|
Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
|
Xiong, Q., Zheng, J.P., Yu, C.M., et al., 2008. Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang: Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chinese Science Bulletin, 53(22): 2782-2792(in Chinese). doi: 10.1360/csb2008-53-22-2782
|
Xu, Y., Yang, K.G., Polat, A., et al., 2016. The ~860 Ma Mafic Dikes and Granitoids from the Northern Margin of the Yangtze Block, China: A Record of Oceanic Subduction in the Early Neoproterozoic. Precambrian Research, 275: 310-331. https://doi.org/10.1016/j.precamres.2016.01.021
|
Zhang, C.H., Fan, W.M., Wang, Y.J., et al., 2009. Geochronology and Geochemistry of the Neoproterozoic Mafic-Ultramafic Dykes in the Aikou Area, Western Hunan Province: Petrogenesis and Its Tectonic Implications. Geotectonica et Metallogenia, 33(2): 283-293 (in Chinese with English abstract). http://www.researchgate.net/publication/285031695_geochronology_and_geochemistry_of_the_neoproterozoic_mafic-ultramafic_dykes_in_the_aikou_area_western_hunan_province_petrogenesis_and_its_tectonic_implications
|
Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3-4): 265-288. https://doi.org/10.1016/j.precamres.2006.08.009
|
Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2008. Neoproterozoic Anatexis of Archean Lithosphere: Geochemical Evidence from Felsic to Mafic Intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 163(3-4): 210-238. https://doi.org/10.1016/j.precamres.2007.12.003
|
Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2009. Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust: Geochemical Evidence from Neoproterozoic Granitoids in South China. Lithos, 113(3-4): 347-368. https://doi.org/10.1016/j.lithos.2009.04.024
|
Zhao, J.H., Zhou, M.F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1-2): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002
|
Zhao, J.H., Zhou, M.F., Yan, D.P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299-302. https://doi.org/10.1130/g31701.1 doi: 10.1130/G31701.1
|
Zheng, Y.F., 2003. Neoproterozoic Magmatic Activity and Global Change. Chinese Science Bulletin, 48(16): 1639-1656. https://doi.org/10.1360/03wd0342
|
高山, 张本仁, 1990. 扬子地台北部太古宙TTG片麻岩的发现及其意义. 地球科学, 15(6): 675-679. doi: 10.1007/BF02919267
|
韩宝福, 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性. 地学前缘, 14(3): 64-72. doi: 10.3321/j.issn:1005-2321.2007.03.006
|
胡圣虹, 陈爱芳, 林守麟, 等, 2000. 地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究. 地球科学, 25(2): 186-190. doi: 10.3321/j.issn:1000-2383.2000.02.014
|
李晓勇, 郭锋, 王岳军, 2002. 造山后构造岩浆作用研究评述. 高校地质学报, 8(1): 68-78. doi: 10.3969/j.issn.1006-7493.2002.01.008
|
林广春, 李献华, 李武显, 2006. 川西新元古代基性岩墙群的SHRIMP锆石U-Pb年龄、元素和Nd-Hf同位素地球化学: 岩石成因与构造意义. 中国科学: 地球科学, 36(7): 630-645. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200607003.htm
|
凌文黎, 高山, 程建萍, 等, 2006. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义——来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束. 岩石学报, 22(2): 387-396. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602011.htm
|
马大铨, 杜绍华, 肖志发, 2002. 黄陵花岗岩基的成因. 岩石矿物学杂志, 21(2): 151-161. doi: 10.3969/j.issn.1000-6524.2002.02.009
|
马大铨, 李志昌, 肖志发, 1997. 鄂西崆岭杂岩的组成、时代及地质演化. 地球学报, 18(3): 233-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB703.001.htm
|
任光明, 庞维华, 孙志明, 等, 2013. 扬子西缘登相营群基性岩墙锆石U-Pb年代学及岩石地球化学特征. 成都理工大学学报(自然科学版), 40(1): 66-79. doi: 10.3969/j.issn.1671-9727.2013.01.010
|
王孝磊, 周金城, 邱检生, 等, 2006. 桂北新元古代强过铝花岗岩的成因: 锆石年代学和Hf同位素制约. 岩石学报, 22(2): 326-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602007.htm
|
吴慧, 2017. 扬子陆核区~865 Ma和~815 Ma幔源岩浆事件识别及其对华南陆块新元古代构造演化的指示(博士学位论文). 武汉: 中国地质大学
|
吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
|
熊庆, 郑建平, 余淳梅, 等, 2008. 宜昌圈椅埫A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用. 科学通报, 53(22): 2782-2792. doi: 10.3321/j.issn:0023-074X.2008.22.017
|
张春红, 范蔚茗, 王岳军, 等, 2009. 湘西隘口新元古代基性-超基性岩墙年代学和地球化学特征: 岩石成因及其构造意义. 大地构造与成矿学, 33(2): 283-293. doi: 10.3969/j.issn.1001-1552.2009.02.012
|